What do you think? work together!

What surprised you about the
debugging assignment?

What types of things will you
remember to try in the future?

CSE 374 Lecture 16

Week 6: More preprocessor, Multiple Files

test.c
db.h
curve.h
curve.c

Function Stubbing

Linkedlist.h
linkedlist_1.c Linkedlist.c
linkedlistclient.c

Voo EWNKF

19
20
21
22
23
24
25
26
27
28

[**
* Integer linked list example
* CSE 374

*/

#ifndef LINKEDLIST_H
#define LINKEDLIST_H

// A single list node that stores an integer as data.

typedef struct IntListNode {
int data;
struct IntListNode* next;
} IntListNode;

// Allocates a new node on the heap.
IntListNode* makeNode(int data, IntListNode* next);

// Builds a heap-allocated linked from array.
IntListNode* fromArray(int* array, int length);

// Frees all nodes in the linked list.
void freelList(IntListNode* list);

// Prints the contents of the linked list.
void printList(IntListNodex list);

#endif

WOoOJOOOEWNR

VESS
* Integer linked list client example
* CSE 374

*/

#include <stdlib.h>|
#include "linkedlist.h"

int main(int argc, char **argv) {
int arrl|3] = 11 2, 3};
IntListNode* listl = fromArray(arrl,
printList(listl);

int arr2[d] = {4, 3, 2, 1};
IntListNode* list2 = fromArray(arr2,
printList(list2);

freeList(listl);
freeList(list2);
return EXIT_SUCCESS;

API: Application Programming Interface

e Defines input and output for
‘applications’
o Can be entire apps, or
subfunctions, or classes
o Library APIs describe available
functions in library
e Useful for writing & testing
o APl dictates function prototype
o (Black box?) Tests that show API
adherence

C Header files:

Define variable and function
signatures

Only what outside code might need
to use

Different header files can allow
different visibility

Encapsulation (computer programming) XA 34 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In software systems, encapsulation refers to the bundling of data with the mechanisms or methods that operate on the data. It may also

refer to the limiting of direct access to some of that data, such as an object's components.[” Encapsulation allows developers to present a

consistent and usable interface which is independent of how a system is implemented internally. As one example, encapsulation can be used
to hide the values or state of a structured data object inside a class, preventing direct access to them by clients in a way that could expose
hidden implementation details or violate state invariance maintained by the methods.

Linked List Continued

e One set of code to define Compile with

linked list: $gcc -o lldemo linkedlist.c

o Linkedlist.h linkedlistclient.c
o Linkedlist.c
e Another piece of code uses it: demo
o Linkedlistclient.c | . |
o #include “linkedlist.h” T linkedlist.o linkedlistclient.o —
| |
| |

linkedlist.c linkedlist.h linkedlistclient.c

Dependency Tree - helps decide what to do

Each target T is dependent on one or more sources S
If any Sis newer than T, remake T.

Recursive: If a source is also a target for other sources, must also evaluate its
dependencies and possibly remake

lldemo

T linkedlist.o linkedlistclient.o —;

linkedlist.c linkedlist.h linkedlistclient.c

Directed-acyclic-graph
(cycles make no sense)

Compiling in Compilation process is actually
more detail T

Multi-file compilation requires
knowing more details

source code

file

expanded
source code

file

assembler

file

object code

file

executable
file

progl.cpp

C++

preprocessor

temporary file; can be
printed on stdout

=

progl.s

progl.o

#included header

files

object code for
library functions

=

progl

Stop after the preprocessor and
store the preprocessed C file in

file.pp
$ gcc -E file.c > file.pp

Stop after the compiler and store
the assembly code in file.s
$ gcc -Sfile.c

Stop after the assembler and
store the machine code in file.o
$ gcc -cfile.c

Preprocessor Review

The preprocessor rewrites
code before the compiler
gets it.

Has multiple roles:

Include header files
Define Constants

Define Macros
Conditional Compilation

(and header files)

#include <stdlib.h>
#include “userfile.h”
Header files
Always use “.h’,
Headers include function, struct,
constant declarations
Never include function implementations
Never include ‘.c’
$Sgcc -1 : look in specific

directories

What to Include file

1. You create a.hfile to share code with another calling module

a. Declare any variables and functions you want another caller to user
b. Functions you want to use only in the same file are declare in the .c file
c. Include libraries needed to compile the header file

2. Ifyouhave a.c,whichusesprintfinclude<stdio.h> ina.c

3. Ifyoualsohaveb.c,whichusesprintf,you couldinclude
<stdio.h>in“a.h” andnotina.corb.c, however

4, Generally, include any header files needed for directly-called functions
(promotes encapsulation), so b . c would include <stdio.h>

Symbolic Constants & Macros

=> Creates TOKEN to represent more Constants:

text
=> Preprocessor: #define SYMBOLIC CONSTANT value
€ Replaces all matching TOKENS in #define NOT PI 22/7

rest of file #define VERSION 3.14
€ Knows where words start and end #define FEET PER MILE 5280

H tion of tth
® Hasno notion of scope (not the #define MAX LINE SIZE 5000
compiler) - N

Can shadow another #define
Use #undef to remove

v

Macros

Replace all matching “calls” with “body”
but with text of arguments where the
parameters are (just string substitution)

Gotchas (understand why!) ->

Macros DO NOT avoid performance
overhead of a function call (maybe truein
1975, not now)

Macros CAN BE more flexible though
(type-inspecific)

#define TWICE AWFUL (x) x*2

#define TWICE BAD(x) ((x)+(x))

f#define TWICE OK(x) ((x)*2)

double twice (double x) {
return x+x; }

y=3;

Zz=4;

w=TWICE_AWFUL(y+z); [y+z*2]
z=TWICE_BAD(++y); [++y + ++y]
z=TWICE_BAD(y++); [y++ +y++]

Macros: debugging

Remember - it’SjUSl' #define TWICE AWFUL(x) x*2

int main(int argc, char **argv) {

pure string e
replacement. int y = 2;

// This gives 5 instead of 6
printf ("Twice (1+2) is 6, but %d\n",
TWICE AWFUL (x+y)) ;

Macros: debugging

Remember - it’SjUSl' #define TWICE AWFUL(x) x*2

int main(int argc, char **argv) {

pure string e
replacement. int y = 2;

// This gives 5 instead of 6
printf ("Twice (1+2) is 6, but %d\n",
x+y*2;

Justifiable Macros

Parameterized macros are generally to be avoided (use functions)

There are things functions cannot do:

#define NEW T(t, howmany) ((t*)malloc((howmany)*sizeof(t))

#define PRINT (x) printf ("%$s:%d %$s\n", __FILE , LINE ,Xx)

Be very careful with syntax if you do use them

Conditional Compilation

// use DBG_PRINT for debug-printing

#ifdef FOO .
_ _ _ _ #ifdef DEBUG
// only compiled if FOO is defined .]
endif ##define DBG PRINT (x) printf ("%$s",x)
endi -

#else

// replace with nothing
#define DBG_PRINT (x)
#endif

#ifndef FOO

// only compiled if NOT FOO
#endif

DBG PRINT ("hello world!'\n");
#if FOO > 2 -
// only compiled if FOO > 2

fendif $ gcc -D DEBUG foo.c
endi

// or with #define

#ifndef: header file inclusion

#ifndef FOO H e Assuming nobody else defines SOME_HEADER_H
— (convention)
#define FOO H o first #include "some_header.h" will do the define

and include the rest of the file
o second and later will skip everything

e More efficient than copying the prototypes over
and over again

e In presence of circularincludes, necessary to
avoid “creating” an infinitely large result of

preprocessing

and end it with:

#endif

Global Variables

Declared with normal
syntax, but outside any
functions

Must be declared
within file to be
‘known’ (could be put
in header).

#include <stdio.h>

#define TWICE AWFUL (x) x*2
#define TWICE BAD(x) ((x)+(x))
#define TWICE OK (x) ((x)*2)

int ex global;

int main(int argc, char **argv)

Extern & Static Variables

e Globalvariables have space allocated in e Ckeyword static allocates spacein the
the global memory section, not the global memory section, not the stack.
stack. o Memory persists outside of scope

o Persist and can be used by all the o Can not have a static variable in a struct

functions within scope

o o i int fun() {
o Thisis within the same source file static int count = 0;
o UNLESS, keyword extern is used count++;
. t t;
o Ifyou wantto use a global variable) FeREn coun
across multiple source files put an
extern declaration in the header file e Astatic function limits the scope of the
function
extern int var; o Only called within the same source file
int var = 0; o Allows for encapsulation
int main(void) {
var = 10;

return 0O;

}

Static-Global Variables

Using ‘static’ with global variables,
or with functions explicitly limits
visibility to current module.

In truth, if you HAVE to use global
variables, you should always make
them static; C doesn’t require this

but it is good software engineering.

Notes: Ucing ‘ctatic’ here ic
promoting encapcvlation - a
concept strongly developed in
object oriented programming. It
allows you to repeat names in
different modules, and to limit
vicibility for implementation

control.

