
What do you think? Work together!

Fill in the blanks to declare a struct
that allows for an array of
branches. Each branch is a pointer
to a new trieNode.

typedef struct trieNode {
 _____ _branches_____;

char *word;
} trieNode;

CSE 374: Lecture 15
Testing

Writing Good Code
1. Choose the right language. If possible, choose languages that prevent certain types

of bugs. For example, if you don't need the lower-level performance or control, pick a
language like Java rather than C to avoid memory-related bugs.

2. Think before you code. Understand how the program will work before implementing it.
Draw data structures and how you will modify them over the course of the program.
Write pseudocode and consider all of the different cases you might encounter.

3. Make defects visible. Use "assert" statements and exceptions (if they exist in your
language) to catch errors safely. Document your code.

4. Test the code. Ensure proper behavior by writing another program to exercise the code
completely.

5. Debugging. Unavoidable. Examples of debugging include adding print statements,
gdb, valgrind or other tools, or adding more test cases.

"There are two ways of constructing a software design:
● One way is to make it so simple that there are

obviously no deficiencies, and
● the other way is to make it so complicated that there

are no obvious deficiencies.

The first method is far more difficult."
Sir C. A. R. Hoare
1980 Turing Award winner
Invented "quicksort"

What is testing?

"Test your software or your users will."
Hunt & Thomas -- The Pragmatic Programmer

Software testing evaluates
the effectiveness of a
software solution

★ Systematic
★ Objective

Effectiveness:

Does what it is supposed to do

Fails gracefully

Uses memory safely and
efficiently

Computes in reasonable time

https://en.wikipedia.org/wiki/Software_testing

https://en.wikipedia.org/wiki/Software_testing

Side quest:
Specifications

What is testing?

"Test your software or your users will."
Hunt & Thomas -- The Pragmatic Programmer

Software testing evaluates
the effectiveness of a
software solution

★ Systematic
★ Objective

Effectiveness:

Does what it is supposed to do

Fails gracefully

Uses memory safely and
efficiently

Computes in reasonable time

https://en.wikipedia.org/wiki/Software_testing

But how do we
know what it is
supposed to do?

https://en.wikipedia.org/wiki/Software_testing

Full Specification
● Tractable for very simple stuff:

○ “Given integers x,y>0, return the greatest common divisor.”
● What about sorting a doubly-linked list?

○ Precondition: Can input be NULL? Can any prev and next fields be
NULL? Can the list be circular or not?

○ Postcondition: Sorted (how to specify?, on what condition?)
● Beyond “pre” and “post” – time/space overhead, other effects (such as

printing), things that happen in parallel
● Specs guide programming and testing!
● Declarative (“what” not “how”)

○ decouples implementation and use.

Basics: Pre and Post Conditions

● Pre- and post-conditions apply to any statement, not just functions
○ What is promised before and guaranteed after

● Because a loop “calls itself” its body’s post-condition better imply
the loop’s precondition
○ A loop invariant

● CORRECT: a segment of code is correct if, when it begins
execution in a state where its precondition is true, it is guaranteed
to terminate in a state in which the postcondition is true

● Example: find max (next slide)

Find Max / Loop-invariant
// pre: arr has length
// len; len >= 1
int max = arr[0];
int i=1;
while(i<len) {
 if(arr[i] > max)
 max = arr[i];
 ++i;
}
// post: max >= all arr
// elements

loop-invariant: For all j < i,
max >= arr[j].

to show it holds after the loop
body, must assume it holds
before loop body

loop-invariant plus !(i<len)
after body, enough to show post

Partial Specification
It may not be possible to completely specify an algorithm (or
expedient)

Partial Specs:
➔ What is each argument precisely? Can arguments be null?
➔ Are pointers to stack data allowed? (what if stack is popped?)
➔ Are cycles in data structures allowed?
➔ Are there min and max sizes of data?

Checking specifications as part of code

● Specs are useful for more than writing code and testing
● Check them dynamically, e.g., with assertions

○ Easy: argument not NULL
○ Harder but doable: list not cyclic
○ Impossible: Does the caller have other pointers to this

object?

Use ‘assert’ in C

API: Application Programming Interface
● Defines input and output for

ʻapplicationsʼ
○ Can be entire apps, or

subfunctions, or classes
○ Library APIs describe available

functions in library
● Useful for writing & testing

○ API dictates function prototype
○ (Black box?) Tests that show API

adherence

Javadocs: Great example of an API
standard

@param
@returns
@throws
@see
@author

Scientific Computing
Notes: worth specifying units in the function description and perhaps argument names.

Main quest:
Testing

What is testing?

"Test your software or your users will."
Hunt & Thomas -- The Pragmatic Programmer

Software testing evaluates
the effectiveness of a
software solution

★ Systematic
★ Objective

Effectiveness:

Does what it is supposed to do

Fails gracefully

Uses memory safely and
efficiently

Computes in reasonable time

https://en.wikipedia.org/wiki/Software_testing

https://en.wikipedia.org/wiki/Software_testing

Testing Challenges
● Testing is very limited and difficult

○ Small number of inputs
○ Small number of calling contexts, environments, compilers, …
○ Small amount of observable output
○ Requires more work to implement test code
○ It is hard to imagine all the possible flaws in your own code

● Standard coverage metrics (statement, branch, path) are useful but only
emphasize how limited it is.

"Program testing can be a very effective way to show the presence of bugs, but is hopelessly inadequate for
showing their absence."
Edsger Dijkstra -- 1972 Turing Award lecture

Testing Responsibility

~ Every person writing software should
be capable and responsible for testing it.

(It’s a highly challenging job: Some specialize in it.)

How much testing?
❖ Often use ʻcoverage metricsʼ:

➢ Percentage of code that is covered by testing mechanisms.
❖ Nice for goal setting
❖ Not sufficient for guaranteeing problem free code.

Coverage
int f(int a, int b)
{
 int ans = 0;
 if(a)
 ans += a;
 if(b)
 ans += b;
 return ans;
}

Statement coverage: f(1,1) sufficient

Branch coverage: f(1,1) and f(0,0)
sufficient

Path coverage: f(0,0), f(1,0),
f(0,1), f(1,1) sufficient

But even the example path-coverage test
suite suggests f is a correct “or” function for
C; it is not. f(-1,1)

F => a OR b where only ʻ0ʼ is false.

Types of Testing

● Unit testing looks for errors in subsystems (functions, file, class) in isolation.
○ Small number of things to test.
○ Easier to find faults when errors occur
○ Can test many components in parallel

● Integration testing tests the interactions between subsystems of code. Can catch errors that unit tests will
not surface, since while each subsystem may be correct separately, they may not work together properly.

● Continuous integration testing is automatically running integration tests and unit tests on every commit.
● Regression testing running tests regularly to prevent re-introduction of previous errors
● Performance testing measures performance: how much memory it takes, how fast it is, and how much

CPU it uses. Performance tests can reveal errors in how the program's resources are managed -
bottlenecks in the system.

● Reliability testing looks at performance when a system is put under heavy and consistent use.
● Security testing is looking for vulnerabilities that could be abused.
● Usability testing is high level testing to look at whether software responds to typical user interactions

correctly.

Black-Box v. Clear-Box testing
Black box testing allows the tester to
specify input, and see output, with no
vision into the actual code.

Depends only on specification of
code function

Wonʼt get stuck implementing only
the logic in the code

Clear box testing is written with a full view
of the code, tester specifies test cases to
exercise known cases in the code.

Write tests for all the weird corner
cases in code.

Check the edge cases - loop boundaries, empty or full data structures, max-values
Check for response to different types of input, and unexpected input

Use ‘assert’ in C

Unit Testing
Test small components of code
individually

Basic approach - ʻassertʼ desired
performance.

(Note: Use conditional compilation
Ifdef NDEBUG
Plus macro
#define assert(ignore)((void) 0)
To compile without test code.)

#include <assert.h>
#include <stdlib.h>
#include "f.h"

// Assert statements will fail with a message
// if not true.
int main(int argc, char** argv) {

 assert(!f(0, 0)); // Test 1: f(0,0) => 0
 assert(f(0, 1)); // Test 2: f(0,1) => T
 assert(f(1, 0)); // Test 3: f(1,0) => T
 assert(f(1,1)); // Test 4: f(1,1) => T

 // Test case 5: f(-1,1) => not-0
 assert(f(-1,1));
 return EXIT_SUCCESS;
}

OUTPUT >> program: f.c:9: main: Assertion
`!f(0,0)' failed. Abort (core dumped)

Assert Style
● Often guidelines are simple and say “always” check everything, but:

○ Often not on “private” functions (caller already checked)
○ Unnecessary if checked statically

● Usually “Disabled” in released code because:
○ executing them takes time
○ failures are not fixable by users anyway
○ assertions themselves could have bugs/vulnerabilities

● Others say:
○ Should leave enabled; corrupting data on real runs is worse than

when debugging

Exceptions
● Assert is used to verify internal expectations in code controlled by user

○ If asserts are violated code can be modified
● Exceptions are used to check expectations of code outside your control

○ Such as the return of a library function
○ Should usually exit (EXIT_FAILURE)

● Language dependent - Java offers asserts on top of its exception handling,
C does not offer exception handling.
○ User is expected to anticipate trouble and catch it
○ Returning success/failure codes can be very helpful

● Other Language dependent tools exist
○ Example: strong type checking prevents some sorts of specification violations

Conditional Compilation

#ifdef FOO
// only compiled if FOO is defined
#endif

#ifndef FOO
// only compiled if NOT FOO
#endif

#if FOO > 2
// only compiled if FOO > 2
#endif

// use DBG_PRINT for debug-printing
#ifdef DEBUG
#define DBG_PRINT(x) printf("%s",x)
#else
// replace with nothing
#define DBG_PRINT(x)
#endif

DBG_PRINT("hello world!\n");

$ gcc -D DEBUG foo.c
// or with #define

Stubbing
Unit testing looks at one component at a
time

Provide ʻstubsʼ to give just enough code
for executing the desired unit.

After unit testing succeeds, proceed with
integration testing (combining units) and
system testing (the entire product).

Testing frameworks exist to make this
easier: explore and use them!

● Instead of computing a function,
use a small table of pre-encoded
answers

● Return default answers that
wonʼt mess up what youʼre
testing

● Donʼt do things (e.g., print) that
wonʼt be missed

● Use an easier/ slower algorithm
● Use an implementation of fixed

size (an array instead of a list?)
● Test with hard coded input.

Eat your vegetables
● Make tests

○ Early
○ easy to run (e.g., a make target with an automatic diff against sample output)
○ that test interesting and well-understood properties
○ that are as well-written and documented as other code

● Write the tests first! (seems odd until you do it)
● Write much more code than the “assignment requires you turn-in”
● Manually or automatically compute test-inputs and right answers?
● Write regression tests and run on each version to ensure bugs do not

creep in for stuff that “used to work”.

Homework 5
Idea:

- Write source code for a tree
- Write tests to make sure the tree does what you want

- Use main only to load a dictionary, add a ʻprint trieʼ so you can check that what
you thought you loaded was there. Make extremely short dictionaries.

- ONLY THEN
- Write source code to create the interface to your tree.

- Use HMW3 to test your trie before you submit it. Can you add tests to evaluate
some of the tricky scenarios? Or create a new Testfile that tests different types
of use?

What tests can you write?
● Do letters become the correct number?
● Is memory allocated & deallocated

correctly?
○ Hint: valgrind

Testing to Debug
❖ Have bug? Find the cause and fix it
❖ A bit of an art, but, Treat debugging as a scientific experiment:

"Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly
as possible, you are, by definition, not smart enough to debug it."
Brian Kernighan -- Wrote THE BOOK on C (our book!)

Hypothesis: the problem is because …

Experiment: design tests to verify hypothesis

Not verified? Start over with a new hypothesis

Verified? Bug found! Fix it & test it
Add the test to your collection

Magic Item:
Test Frameworks

Why use a framework?
● Create and modify individual test cases easily
● Run test sets based on a list of test cases, using one script
● Automate testing
● For most languages, sometimes supports many languages
● Data driven testing: allows for testing with externally stored data
● Unit testing: allows for testing specific interfaces one at a time

Many Existing Frameworks
C: Lots! - Cunit, gtest,
Unity

Java: Selenium, Junit

safe_assert.h
Instead of a main() function, there is a suite() block

● The suite block takes a string literal which is the name of the suite

Inside of the suite() are similar test() blocks

suite("My test suite") {
 test("Test case 1") {
 int res = pow(10, 2);
 safe_assert(res == 100);
 }
}

36

The safe_assert() macro
safe_assert() is very similar to assert(), except that if you segfault inside of an
assert, it will tell you!

Assert failed (test.c:14): `*null_ptr'

The test suite process will survive the segfault

● Then, it will tell you that there was an error and run the other test cases

● You don't have to know how this works (it's magic ✨)

○ Again, interface vs. implementation

37

