
What do you think? Work together!

What are some positive things
about explicit memory
management?

What are some negative things
about explicit memory
management?

CSE 374 Lecture 12
Debugging and GDB

2

What is debugging?

3

What is a Bug?
● A bug is a difference between the

design of a program and its
implementation

○ Definition based on Ko & Meyers
(2004)

● Examples of bugs
○ Expected factorial(5) to be 120,

but it returned 0
○ Expected program to finish

successfully, but crashed and printed
"segmentation fault"

○ Expected normal output to be
printed, but instead printed strange
symbols

http://faculty.washington.edu/ajko/papers/Ko2004SoftwareErrorsFramework.pdf
http://faculty.washington.edu/ajko/papers/Ko2004SoftwareErrorsFramework.pdf

How do you avoid debugging?

4

Avoid writing code!

Ways to make debugging easier

1. Donʼt Panic
2. Be systematic
3. Create theories
4. Test theories
5. Practice
6. Test early and often

5

https://en.wikipedia.org/wi
ki/Rubber_duck_debugging

Describe the problem
Hypothesize causes

Rule out causes
Narrow area of the bug

https://en.wikipedia.org/wiki/Rubber_duck_debugging
https://en.wikipedia.org/wiki/Rubber_duck_debugging

Describe
We can describe the problem without even looking at the code

Which of these bug descriptions do you think is best?

A. factorial() does not return correct output

B. factorial() always returns 0

C. factorial(5) does not return correct number

D. factorial(5) returns 0

6
Demo: factorial_original.c

Hypothesize
Now, let's look at the code for factorial()

Select all the places where the error could be
coming from

❏ The if statement's "then" branch
❏ The if statement's "else" branch
❏ Somewhere else

7

int factorial(int x) {
 if (x == 0) {
 // ignore for now
 } else {
 // ignore for now
 }
}

Demo: Testing

8

factorial.c

Aside

9

You should always do some systematic
testing before submitting assignments -
test each of the specs… Does it work?
Start with the simplest, move to the
complex

Investigate
For now, let's just investigate the base case and
recursive case

The base case is the "if then" branch

The recursive case is the "else" branch

10

int factorial(int x) {
 if (x == 0) {
 return x;
 } else {
 return x * factorial(x-1);
 }
}

Case Input Math Equivalent Expected Actual

Base factorial(0) 0! = 1 1 ???

Recursive factorial(1) 1! = 1 1 ???

Recursive factorial(2) 2! = 1 * 2 2 ???

Recursive factorial(3) 3! = 1 * 2 * 3 6 ???

Demo: factorial_test.c

Investigate - Testing
One way to investigate is to write code to test
different inputs

If we do this, we find that the base case has a
problem

11

int factorial(int x) {
 if (x == 0) {
 return x;
 } else {
 return x * factorial(x-1);
 }
}

Case Input Math Equivalent Expected Actual

Base factorial(0) 0! = 1 1 0

Recursive factorial(1) 1! = 1 1 0

Recursive factorial(2) 2! = 1 * 2 2 0

Recursive factorial(3) 3! = 1 * 2 * 3 6 0

Fix

12

int factorial(int x) {
 if (x == 0) {
 return x;
 } else {
 return x * factorial(x-1);
 }
}

Case Input Math Equivalent Expected Actual

Base factorial(0) 0! = 1 1 1

Recursive factorial(1) 1! = 1 1 1

Recursive factorial(2) 2! = 1 * 2 2 2

Recursive factorial(3) 3! = 1 * 2 * 3 6 6

int factorial(int x) {
 if (x == 0) {
 return 1;
 } else {
 return x * factorial(x-1);
 }
}

Demo: factorial_fixed.c

Basic debugging techniques
● Add print statements

○ Says ʻI got here ,̓ or ʻmy variable value is ʻ2ʼ
● Comment out (or delete) code

○ tests to determine whether removed code was the source of the problem
● Test one function at a time

○ Comment out a lot of code, or replace it with known conditions
● Test the edges

○ Code often breaks at the beginning or end of a loop, or at the entry or exit
of a function; double check your logic in these places

○ Double check your logic in the odd / rare exceptional cases

13

If you know something must be true -
ex: a pointer can not be Null
Add a test, and print if there is an
issue. Later - Asserts

Debuggers can help
A “debugger” is a tool that lets you stop running programs, inspect (sometimes
set) values, and put in stops.

Instead of relying on changing code (commenting out, printf) interactively
examine variable values, pause, and progress step-by-step. Eliminates the
edit/recompile cycle.

Most modern IDEs have some built in debugging capacity.

Debuggers are just tools; they wonʼt do the work.

14

GDB
Gdb => gnu debugger (standard part of linux development, supports many languages)

https://courses.cs.washington.edu/courses/cse374/21au/resources/refcard.pdf

Can examine a running file

Can also examine ʻcoreʼ files of previous crashed programs…. Neat!

15

https://courses.cs.washington.edu/courses/cse374/21sp/refcard.pdf

Run GDB
1. Compile code with ʻ-gʼ flag

(saves human readable
info)

2. Open the program with:
gdb
a. Start or restart the

program: run
b. Quit the program: kill
c. Quit gdb: quit

16

● bt – stack backtrace
● up, down – change current stack

frame
● list – display source code (list n, list)
● print expression – evaluate and print

expression
● display expression

○ (re-)evaluate and print expression
every time execution pauses.

○ undisplay – remove an expression
from this recurring list.

● info locals – print all locals (but not
parameters)

● x (examine) – look at blocks of
memory in various formats

Demo: Segmentation fault

17

arraydynamic.c

Review: Debugging Segmentation Fault
If we get a segmentation fault:

1. Compile with debugging symbols using gcc -g -o myexecutable file.c

2. gdb ./myexecutable

3. Type "run" into GDB

4. When you get a segmentation fault, type "backtrace"

5. Start from the top of the backtrace and investigate the line numbers

OR

valgrind –leak-check=full ./myexecutable

18

Demo: Inspect values at runtime

19

reverse.c

Input

Output

The Problem with reverse.c

20

h e l l o \n \0

h e l l o \n \0

Input

Output

The Problem with reverse.c

21

h e l l o \n \0

h\0 e\n l o l l o l \n e \0h

Input

Output

Output is an empty C string. Zero characters followed by a null terminator

The Problem with reverse.c

22

h e l l o \n \0

h\0 e\n l o l l o l \n e \0h

x/<strlen>c string

Breakpoints
● Temporarily stop program running at given

points
○ Look at values in variables
○ Test conditions

● break function (or line-number or ...)
● conditional breakpoints (break XXX if expr)

○ to skip a bunch of iterations
○ to do assertion checking

● going forward: continue, next, step, finish
○ Some debuggers let you “go backwards”

(typically an illusion)
● Also useful for learning program structure

(e.g., when is a function called)

23

● break – set breakpoint.
○ break , break , break :

● info break – print table of current BPs
● clear – remove breakpoints
● disable/enable – temporarily off/on
● continue – resume execution to next

BP
● step – execute next source line
● next – execute next source line

○ But treat function calls as a single
statement and don't step into them

● finish – execute to the conclusion of
the current function

○ How to recover if you meant “next”
instead of “step”

GDB Most Important Commands
gdb ./myexecutable

run [args] ...

quit

backtrace

tui enable/disable

break (line number/function name)

next

step

list 24

Start GDB

Run the program with the given arguments

Quit GDB

Print the functions that were called to get here

See the code while debugging

Set a breakpoint on a certain line or function

Move to the next line, skipping over function calls

Move to the next line, going into function calls

List the code

Want to use emacs as an
IDE?

Check out the debugging
demo on the webpage

25

