
What do you think? What Prints?
int main(int argc, char **argv)
{

 char ant[4] = "bed";
 int x[2];
 *x = 6;
 x[1] = 7;
 int y = 4;
 int *z = &y;
 *z = *x;
 printf("%d %d %d %s\n", *x, \
 x[1], y, ant);

CSE 374 Lecture 11
Memory Allocation & De-allocation

The stack
Stack stores active functions & local variables

Frames deleted when function returns
Local variables do not persist

Local variables must have defined size
Can not make run-time adjustments

(Arrays must have length)

<- stack

Stack (morepointer)

mainint = 30;

mainintptr =

returnint = 35;

p =

d = 30

q =

Stack (morepointer)

mainint = 30;

mainintptr =

returnint (random val)

p =

d = 30

q =

Puzzle: What prints?

#include <stdio.h>
void mystery(char *a,int *b,
 int c) {
 int *d = b - 1;
 c = *b + c;
 *b = c - *d;
 *d = *b - *d;
 a[2] = a[b - d];
}

int main(int argc, char **argv) {
 char ant[4] = "bed";
 int x[2];
 *x = 6;
 x[1] = 7;
 int y = 4;
 int *z = &y;
 *z = *x;
 printf("%d %d %d %s\n", *x, \
 x[1], y, ant);
 mystery(ant, x + 1, y);
 printf("%d %d %d %s\n", *x, \
 x[1], y, ant);
}

b e d 6 7 4

b e d 6 7 6

a b c

6

b e e 1 7 4

a b
c

13

d

Dangling
pointers

Garbage collecting languages (like Java)
only delete memory that is unreachable
to avoid this problem.

Pointers referring to
memory that has been

released (Demo)

Storage
● Variables need a place to live in memory
● Get ʻallocatedʼ a physical space in memory (with an address)
● Size of memory allocation depends on datatype
● Get ʻdeallocatedʼ to release the space in memory

Address ʻ0ʼ
Address ʻ4ʼ

Address ʻ264-1ʼ or ʻ232-1ʼ

code heap ->globals <- stack

The Heap
● Gives us flexible space
● Allocated at run time, with current space requirements
● Persistent until specifically free-ed
● User allocates memory with malloc:

void* malloc (size_t size);

Allocate memory block
Allocates a block of size bytes of memory, returning a pointer to the beginning
of the block.
Returns NULL in failure -> should always check for NULL before using pointer

heap ->

Malloc - Memory Allocation
● malloc is used in a specific way: (T*)malloc(e * sizeof(T))

○ User doesnʼt need to know sizeof(T) - use sizeof instead of “16”.

● Returns a pointer to memory large enough to hold an array of
length e with elements of type T

● malloc returns an untyped pointer (void*); the cast (T*) tells C to
treat it as a pointer to a block of type T

● If allocation fails (extremely rare, but can happen), returns NULL.
○ Programs must always check.

Initialization
Malloc does not initialize
Must go set initial values manually

Calloc: void* calloc (size_t num, size_t size);

Allocate and zero-initialize array
Allocates a block of memory for an array of num elements, each of them
size bytes long, and initializes all its bits to zero.

*Malloc is faster

int *var = (int*)malloc(1*sizeof(int));
*var = 255;

Halfway through with Memory Management
➔ We can now allocate memory of any size and have it “live” forever

◆ For example, we can allocate an array and use it indefinitely, independent of the stack

➔ Unfortunately, computers do not have infinite memory so “living forever” could
be a problem

Garbage Collection
➔ Java solution: Conceptually objects live forever, but the system has a garbage

collector that finds unreachable objects and reclaims their space
➔ C solution: You explicitly free an objectʼs space by passing a pointer to it to the

library function free
◆ Managing heap memory correctly is hard in complex software and is the disadvantage of C-style

heap allocation

Freeing Memory
Deallocate memory block

void free (void* ptr);

● A block of memory previously allocated by a call to malloc, calloc or realloc is
deallocated, making it available again for further allocations.

● If ptr does not point to a block of memory allocated with the above functions,
it causes undefined behavior.

● If ptr is a null pointer, the function does nothing.
● Notice that this function does not change the value of ptr itself, hence it still

points to the same (now invalid) location.

Example
int *p = (int*)malloc(sizeof(int));
p = NULL; /* LEAK! - lost address */
int *q = (int*)malloc(sizeof(int));
free(q);
free(q); /* Best case: crash */
int *r = (int*)malloc(sizeof(int));
free(r);
int *s = (int*)malloc(sizeof(int));
*s = 19;
r = 17; / Best case: crash */

If foo returns a pointer, can the caller free
the memory? (Who owns that pointer?)

If bar gets two pointers, can it free one, or
both?

Rules
● For every run-time call to malloc there should be one runtime call

to free
● If you “lose all pointers” to an object, you canʼt ever call free (a

leak)!
● Think hard before re-assigning a pointer; where is it pointing?
● If you “use an object after itʼs freed” (or free it twice), you used a

dangling pointer!
○ Note: Itʼs possible but rare to use up too much memory without

creating “leaks via no more pointers to an object”

Allocating for Arrays

(T*)malloc(e * sizeof(T))
T = datatype
e = count (6)

T Tarray[6]

Tarray

Tarray+1
sizeof(T) e *sizeof(T)

Arrays again
“A reference to an object of type
array-of-T which appears in an
expression decays (with three
exceptions) into a pointer to its first
element; the type of the resultant
pointer is pointer-to-T.”

http://c-faq.com/aryptr/aryptrequiv.ht
ml

Right: x is the array, which decays
to a pointer to an int and &x
returns a pointer to the entire
array.

void f1(int* p) { // takes a pointer
 *p = 5;
}
int* f2() {

int x[3]; // x on stack, is pointer
x[0] = 5;
(&x)[0] = 5; // address of x, points to
 // same place but different T
*x = 5; // put value at location x
*(x+0) = 5; // Also put value at x
f1(x);
f1(&x); // wrong – watch types!
x = &x[2]; // No! Don’t assign address
int *p = &x[2];
return x; // correct type, but is a
 // dangling pointer

}

http://c-faq.com/aryptr/aryptrequiv.html
http://c-faq.com/aryptr/aryptrequiv.html

Pointer arithmetic
● If p has type T* or T[] and *p has type T
● If p points to one item of type T, p+1 points to a place in memory for

the next item of type T
○ So, p[0] is one item of type T, p+i = p[i]

● T[] always has type T*, even if it is declared as T[]
○ Implicit array promotion

Result: Arrays are always passed by reference, not by value. (The
information passed is the address of where the values are
stored.)

Array allocation & manipulation

Tool used to analyze memory usage
(and other things) Catches pointer
errors during execution Prints
summary of heap usage, including
details of memory leaks

Valgrind

$valgrind program arguments
$valgrind --leak-check=full ./dangling

Valgrind
$valgrind --leak-check=full ./arrdyn

The process (a running program) has a
single address space for code, globals,
the stack, & the heap

When the process exits, the entire
address space is freed.

OK to rely on this in many cases

However, good practice to provide
mechanism to free any memory
allocated in a package, allowing
potential clients to release code if
desired

https://chortle.ccsu.edu/CPuzzles/CPuzzlesMain.html

https://chortle.ccsu.edu/CPuzzles/CPuzzlesMain.html

