
CSE 374 Lecture 5
Scripting Continued

TODAY
Brief review

Scripting notes

Practice

Text Editors
Vi (Vim)

● Move around, mark edit using letter keys
● Get to menu by typing “:”
● Save and quit “:wq”, no-save and quit: “:q!”
● Vim is ʻimprovedʼ vi - more powerful

Emacs

● Endlessly extendable; can use arrows to
move

● Menu commands use C (control) or M
(meta/alt)

● Quit: C-x C-c
● Tutorial, C-h for help

Some useful utilities
Use man -k: find commands with subject search

Use find: location a file on a computer (locate: locate a file in the directory
database)
whereis: finds files with a programʼs name, which: where the executable in your
path is found

Use !?phrase: execute the last command containing phrase

Use ^typo^correct: correct a typo in the last command

Use diff f1 f2: find lines that are different in f2 than in f1 (or sdiff)

Process Management
Figure out whatʼs running:

● Top
● ps (many options)

Stop processes:

● Ctrl-c (Send interrupt command)
● Kill (with options) PID

Manage processes:

● Ctrl-z (suspend process) / fg
● nice

Variables useful in a script
$# stores number of parameters (strings) entered

$0 first string entered - the command name

$N returns the Nth argument

$? Returns state of last exit

$* returns all the arguments

$@ returns a space separated string with each argument

(* returns one string with spaces, @ returns an array of words)

Script Arguments & Errors
Script refers to ith argument at
$i ; $0 is the program

Use ʻshiftʼ to move arguments
towards left ($i become $i-n)

Exit your shell with 0
(normal) or 1 (error)

Exit Codes

Exit with no error:

Use exit or exit 0

Exit with error:

User exit 1 or.. {1-255}
Command ʻexitʼ exits a shell, and

ends a shell-script program.

Quoting Variables
In order to retain the literal value of something use ʻsingle quotesʼ

In order to retain all but $, `, \ use “double quotes”

Put $* and $@ in quotes to correctly interpret strings with spaces in them.

Arithmetic
Variables hold strings, so we need a way to tell the shell to evaluate them
numerically:

K=$i+$j does not add the numbers

Use the shell function ((

k=$(($i+$j))

Or let k=”$i+$j”

The shell will automatically convert the strings to the numbers

Conditionals
Binary operators: -eq -ne -lt -le -gt -ge

Can use the [[shell command to use < , > , ==

Syntax is a little different, but commands works as expected

Flow controlif test; then
commands

fi

while test; do
commands

done

for variable in words; do
commands

done

test expression or [expression]

if [-f .bash_profile]; then
 echo "You have a .bash_profile.
Things are fine."
else
 echo "Yikes! You have no
.bash_profile!"
fi

http://linuxcommand.org/lc3_man_pages/testh.html

http://linuxcommand.org/lc3_man_pages/testh.html

Details
Command substitution:
$(command) or `command`

Test:
test condition or [condition]

Upgrade: [[condition]]

Subshell: (command)

Math: ((expression))

Convert to string: $() or $(())

● And more:
https://dev.to/rpalo/bash-brackets-quick-reference-4eh6

Tests:
-eq : equals.
-lt : Less than.
-e <file_a>: File_a exists.
-f <file_a>: File_a exists and a
regular file.
-d <file_a>: File_a exists and is
a directory.
-w <file_a>: File_a exists with
write permissions.
-x <file_a>: File_a exists with
execute permissions.

https://dev.to/rpalo/bash-brackets-quick-reference-4eh6

Functions and local variables
Yes, possible

Generally, a scriptʼs variables
are global

name () compound-command [redirections]
or
function name [()] compound-command [
redirections]

Ex:

func1()
{
 local var='func1 local'
 func2
}

Stuff to watch out for
White space: spacing of words and symbols matters

Assign WITHOUT spaces around the equal, brackets are WITH SPACES

Typo on left creates new variable, typo on right returns empty string.

Reusing variable name replaces the old value

Must put quotes around values with spaces in them

Non number converted to number produces ʻ0ʼ

Practice …
https://courses.cs.washington.edu/courses/cse3
74/23sp/assignments/exercises5.html

Up next: Regular expressions
Regular expressions: string of symbols and characters used for pattern matching

