
CSE 374 Lecture 4
Shell Variables and More Scripting

Feel free to ask questions until lecture starts...

Today
1. Alias
2. Scripting
3. Source / executable

Office hours this week:

HW0 & HW1

Please remember that these two assignments should be done
using Seaside.

If your homework passes the autograder this is sufficient….

Getting files from the VM to Gradescope: There are options, but, I use the GUI and open
Gradescope in the VM web browser.
To move files from seaside, the ʻscpʼ command works well. Remember the command is
scp <copyfrom> <copyto>, and pay attention to which computer you are
executing it on.

Passwords, and managing Passwords
Linux systems have consistent password
management.

● /etc/passwd file contains user info
○ Username
○ Password
○ Userid, groupid
○ Shell
○ Home directory

● /etc/shadow stores encrypted
passwords

Change your password on Linux:
> passwd

Prompts for previous password, then new
password

Passwd also has facilities for those with sudo
access to update other user accounts and password
management

Seaside is a little different - passwords are
obtained from the UWNetID servers (no
/etc/passwd entries).
Passwd will work, and propagate changes through
UWNetID servers.

ProcessInput Output

BASH applies its own processing
to the I/O text - ʻglobbingʼ

State (Environment variables, etc.)

Towards Scripts

● Shell has a state (working directory, user,
aliases, history, streams)

● Can expand state with variables
● ʻSourceʼ runs a file and changes state

Variables & Alias
Define variable

i=15

Access variable

$i

Undefined variable is empty
string

Alias cheer=”echo yahoo\!”

Defines a shortcut, or ʻaliasʼ
to a command

Essentially a super simple
script.

.bashrc

Alias
Defines a shortcut or ʻaliasʼ to
a command.

Also, ʻaliasʼ

.bashrc

(Essentially a really easy script)

.bashrc

● Executed for non-login shells
● Use for commands that are re-run

○ Aliases & functions

.bash_profile

● Executed for login shells
● Use for commands run once

○ Changing $PATH

Emacs (text editor)
C-x C-s #save

C-x C-c # quit

C-e # go to end of line

C-a # go to beginning of line

C-x C-f # find a file

C-g #exit menu

C-x C-k # kill a buffer

You can use any text editor
you like. Emacs is amazingly
powerful, and highly
customizable with lisp scripts.
It is probably worth learning.

Towards Scripts

● Shell has a state (working directory, user, aliases,
history, streams)

● Can expand state with variables
● ʻSourceʼ runs a file and changes state
● Can run a file without changing state by

running script in new shell.
● Allows for repeatable processes and actions

Variables useful in a script
$# stores number of parameters (strings) entered

$0 first string entered - the command name

$N returns the Nth argument

$? Returns state of last exit

$* returns all the arguments

$@ returns a space separated string with each argument

(* returns one word with spaces, @ returns a list of words)

Variables
Shell has a state, which
includes shell variables

All variables are strings
(but can do math, later)

White space matters - not
spaces around the ʻ=ʼ

Create: myVar= or myVar=value

Set: myVar=value

Use: $myVar

Remove: unset $myVar

List variables (use ʻset)

Special Variables
Common variables which set shell state:

$HOME - sets home directory. $HOME=~/CSE374 would reset your home directory
to always be CSE374

$PS1 - sets prompt

$PATH - tells shell where to look for things. Often extended:
$PATH=$PATH:~/CSE374

Show current state: printenv

Export Variables
Use: export myVar

To make variable available in the
initial shell environment.

If a program changes the value of an
exported variable it does not
change the value outside of the
program

: export -n remove export property

Variables act as though passed by
value

Special Characters

! > < & | * ~ [] “ ʻ ` $ /

 \ is escape
character

“string”

ʻstringʼ

What do they all
mean?

Would substitute
things like $VAR

Suppresses
substitutions

Okay, lets make a script!
1. First line of file is #!/bin/bash (specifies which interpreter to execute)
2. Make file executable (chmod u+x)
3. Run a file ./myNewScript
4. Shell sees the shell program (/bin/bash) and launches it to run the

script
5. Can include

a. String tests (string returns true if non-zero length, string < string, etc.)
b. Logic (&&,||,!) - use double brackets
c. File tests (-d : is directory, -f: is file, -w: file has write permission etc.)
d. Math - use double parens

Script Arguments & Errors
Script refers to ith argument at
$i ; $0 is the program

Use ʻshiftʼ to move arguments
towards left ($i become $i-n)

Exit your shell with 0
(normal) or 1 (error)

Exit Codes

Exit with no error:

Use exit or exit 0

Exit with error:

User exit 1 or.. {1-255}
Command ʻexitʼ exits a shell, and

ends a shell-script program.

Quoting Variables
In order to retain the literal value of something use ʻsingle quotesʼ

In order to retain all but $, `, \ use “double quotes”

Put $* and $@ in quotes to correctly interpret strings with spaces in them.

Arithmetic
Variables hold strings, so we need a way to tell the shell to evaluate them
numerically:

K=$i+$j does not add the numbers

Use the shell function ((

k=$(($i+$j))

Or let k=”$i+$j”

The shell will automatically convert the strings to the numbers

Functions and local variables
Yes, possible

Generally, a scriptʼs variables
are global

name () compound-command [redirections]
or
function name [()] compound-command [
redirections]

Ex:

func1()
{
 local var='func1 local'
 func2
}

Stuff to watch out for
White space: spacing of words and symbols matters

Assign WITHOUT spaces around the equal, brackets are WITH SPACES

Typo on left creates new variable, typo on right returns empty string.

Reusing variable name replaces the old value

Must put quotes around values with spaces in them

Non number converted to number produces ʻ0ʼ

Conditionals
Binary operators: -eq -ne -lt -le -gt -ge

Can use the [[shell command to use < , > , ==

Syntax is a little different, but commands works as expected

Flow controlif test; then
commands

fi

while test; do
commands

done

for variable in words; do
commands

done

test expression or [expression]

if [-f .bash_profile]; then
 echo "You have a .bash_profile.
Things are fine."
else
 echo "Yikes! You have no
.bash_profile!"
fi

http://linuxcommand.org/lc3_man_pages/testh.html

http://linuxcommand.org/lc3_man_pages/testh.html

Shell-scripting Notes
Bash Scripting

Interpreted

Esoteric variable access

Everything is a string

Easy access to files and program

Good for quick & interactive programs

Java Programming

Compiled

Highly structured, Strongly typed

Strings have library processing

Data structures and libraries

Good for large complex programs

Scripting Style Guide

Scripts should generally be <200 lines

Always use spaces, not tabs (indent line with two spaces)

Comment code with ʻ#ʼ

https://google.github.io/styleguide/shell.xml

Do one thing and do it well.

