CSE 374 Lecture 4

Shell Variables and Scripting

Feel free to ask questions until lecture starts...

Powered hv ‘h Pall Fvervwhere
.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Today

1. Alias
2. Scripting
3. Source / executable

Office hours this week:

Monday Tuesday Wednesday Thursday Friday
09:30-10:20 Lecture 02 | 14:30-15:30 OH Evan 03 | 09:30-10:20 Lecture 04 | 11:00-12:00 OH Emma 05 | 09:30-10:20 Lecture 06
CSE2G10 Gates Center 152 CSE2G10 CSE1 5th floor Breakout CSE2G10
1/0 Redirection and alias Introduction to scripting Scripting Continued

15:00-16:00 OH Alex L

10:30-11:30 OH Alex X 10:30-11:30 OH Aditya TBD 15:00-16:30 OH Adrian and Aurora
CSE1 4th floor Breakout CSE1 2nd floor Breakout CSE1 5th floor Breakout
12:30-1:30 OH Ray 23:59 PRACTICE HWO due; Shell Access Spec
CSE1 4th floor Breakout
23:59 PRACTICE HW-Intro

HWo & HW1

Please remember that these two assignments should be done
using Seaside.

If your homework passes the autograder this is sufficient....

To move files from seaside, the ‘scp’ command works well. Remember the command is
scp <copyfrom> <copyto>,and pay attention to which computer you are
executing it on.

But also, if you are disciplined about doing your work in your ~/cse374 drive, you can
access it with windows file explorer.

Note about mntclassdir

TL;DR

Use mntclassdir cse374 every time you log in.
Do all your work in ~/cse374

Use udrive access from your home machine
instead of scp

Passwords, and managing Passwords

Linux systems have consistent password
management.

e /etc/passwd file contains userinfo

o Username
o Password
o Userid, groupid
o Shell
o Home directory
e /etc/shadow stores encrypted
passwords

Change your password on Linux:
> passwd

Prompts for previous password, then new
password

Passwd also has facilities for those with sudo
access to update other user accounts and password
management

Seaside is a little different - passwords are
obtained from the UWNetID servers (no
/etc/passwd entries).

Passwd will work, and propagate changes through
UWNetID servers.

Computer Model

OS: Linux

Interface: shell (bash)

Users (many)

7/
%

Computers do two

things

> Storedata
(filesystem)

> Manipulate data
(processes)

Shell is a process that

allows the user to

interact with the

above.

But, the shell also

allows programmingin

its special language.

Bash (shell) Language

e Bash acts as a language interpreter
o Commands are subroutines with arguments

o Bash interprets the arguments & calls
subroutine
o Bash also has its own variables and logic

Bash (shell) Language

e Bash acts as a language interpreter
o Commands are subroutines with arguments

o Bash interprets the arguments & calls
subroutine
o Bash also has its own variables and logic

State (Environment variables, etc.)

Process Output>

BASH applies its own processing
to the I/0 text - ‘globbing’

Special Characters

e Directory Shortcuts
O ~uname or~
o ./or../
e Wildcards- W@mg
o 0ormorechars:*
o Exactly 1char:?
o Specified chars: [a-f]

History, or ‘!’

mh75@cancun cse374]$ cat dog > dig
mh75@cancun cse374]$ echo shovel >> dig
$

[
[
[mh75@cancun cse374 cat dig > dug
[
[

—_ L

mh75@cancun cse374]$ cat dig > digger
mh75@cancun cse374]1$ 1s

cat dig digger dinosaur dog dug
[mh75@cancun cse374]$ 1ls c*

cat

[mh75@cancun cse374]$ 1ls d*

dig digger dinosaur dog dug
[mh75@cancun cse374]1S$ 1s dfou]*

dog dug

[mh75@cancun cse374]$ 1ls d?°?

dig dog dug

[mh75@cancun cse374]1$!1s

ls d??

dig dog dug

Special Characters

1><&| *~[]“¢" §]

\ Is escape
character

“string”

‘string’

e
—>

What do they all
mean?

Would substitute
things like SVAR

Suppresses
substitutions

Shell Behavior

All redirection & string expansion or substitutions
are done by the shell, before the command.

Command only sees resulting 1/O streams.

Processes have two

OUTPUT
Processes all destinations, the
can take INPUT default being StdOut
and StdErr. You can
i?ur?cce),nfhe - P rocess think of these as two
default being ‘ potential files to
Stdin. which a processes
can write.

You can also write to
different files instead of

But, instead of 2> StdErr or StdOut. The >’
using Stdin you symbol means to putinan
i < new file, while >>" means
:i:l L‘Jrseed?r?clz‘j’lli(fc“,in P ro CeSS to append to the end of a
by using the ‘<’ file. The 2’ specifies that
>> you want iostream ‘2’, or
0

symbol (pointing \
towards process). the error stream.

|/0 Streams

e All bash commands have three

streams

o 0-stdin [keyboard]

o 1-stdOut [screen]

o 2-stdErr [screen]
e Canredirect streams

o <yourlnput
>yourOutput
>> appendYourOutput
2>yourError
&> yourOQutput&Error
And more...

o O O O O

Special File /dev/null

o IsEoFifinput
o Dataisdiscarded if output

Can combine one cmd to the next

o Cmdl|cmd2 - pipe output of cmd1
into input of cmd2

o Cmdl; cmd2 - do one after another

o Cmdl cmd2’ - use output of cmd2
as argument to cmdl

Can use cmd logic

o Cmd1||cmd2-do cmd2 if cmdl fails
o Cmdl&&cmd2-docmd?2ifcmdl
succeeds

Some Bash redirection syntax

redirect stdout to a file - command > output
redirect stderr to a file command 2> output
redirect stdout to stderr command 1>&2 output
redirect stderr to stdout command 2>&1 output
redirect stderr and stdout to a file command &> output

Reading:Bash Redirections (spec), bash hackers redirections (examples)

https://www.gnu.org/software/bash/manual/html_node/Redirections.html
http://wiki-dev.bash-hackers.org/syntax/redirection

pipes

drawings. jvns. co

3.5.4 Command Substitution

Command substitution allows the output of a command to replace the command itself. Command substitution occurs when a command is
enclosed as follows:

$(command)
or

" command”

Sous EVANS
@bOrk

by executing command in a subshell environment and replacing the command substitution with the

and, with any trailing newlines deleted. Embedded newlines are not deleted, but they may be removed

Somekimes you want
10 send the autpst of one

Process to the input of ansther

5 s | we -1
53

" 53 files ¥
°

O pipe is o pair

of 2 magical

file descriptors
@and @

/"‘S_,)wc\
stin ® © sHout

qs-] mmand substitution $(cat file) can be replaced by the equivalent but faster $(< file).
when {s does
write(®s, “hi")
WC can read it!
read(e)
- \.\h; nh

e form of substitution is used, backslash retains its literal meaning except when followed by ‘$’, <>’ or “\".

«ded by a backslash terminates the command substitution. When using the $(command) form, all characters
e up the command; none are treated specially.

be nested. To nest when using the backquoted form, escape the inner backquotes with backslashes.

thin double quotes, word splitting and filename expansion are not performed on the results.

PiPe buffers

T'm gonna write
a ba\jil\.’or\ bydes
to @

Uh no if m
bU‘F'Fer is foll you

have to wait

what if your
tacaet process dies?

Is we

2N 7\
9

Is gets sent
SIGPIPE it @ gebs

closed U.s usuauy dues)

YoV Can pipe
SO MANY "Hunas
+oae+her

$ alblcldle

ARRAA
N7~
Pai f

Pl

oL
2N
o

®
\jo &~

P O,

o
es

o

Bash (shell) Language

e Bash acts as a language interpreter
o Commands are subroutines with arguments

o Bash interprets the arguments & calls
subroutine
o Bash also has its own variables and logic

Towards Scripts

Shell has a state (working directory, user,
aliases, history, streams)

Can expand state with variables
‘Source’ runs a file and changes state

Printenv
echo SPS1
echo SPWD
echo SPATH

Special Variables

Common variables which set shell state:

SHOME - sets home directory. SHOME=~/CSE374 would reset your home directory
to always be CSE374

SPS1 - sets prompt

SPATH - tells shell where to look for things. Often extended:
SPATH=SPATH:~/CSE374

Show current state: printenv

Variables & Alias

Define variable

i=15

Access variable

Si

Undefined variable is empty
string i=5

echo $i
echo hip hip

alias cheer="echo yay"

cheer

Alias cheer="echo yahoo\!”

Defines a shortcut, or ‘alias’
to a command

Essentially a super simple
script.

.bashrc

Alias

Defines a shortcut or ‘alias’ to (Essentially a really easy script)
a command.
¢ M)
AISO’ alias .bash_profile .bashrc
‘bashrc e Executed for login shells e Executed for non-login shells
e Use for commands run once e Use for commands that are re-run
o Changing SPATH o Aliases & functions

echo ‘alias greet="echo hello SUSER"’ >> ~/.bashrc
echo mntclassdir cse374 >> ~/.bashrc

greet

source ~/.bashrc

greet

Towards Scripts

Shell has a state (working directory, user, aliases,
history, streams)
Can expand state with variables

e ‘Source’ runs afile and changes state

Can run a file without changing state by
running script in new shell.
Allows for repeatable processes and actions

Variables useful in a script

S# stores number of parameters (strings) entered

S0 first string entered - the command name

SN returns the Nth argument

$? Returns state of last exit

$* returns all the arguments

S@ returns a space separated string with each argument

(* returns one word with spaces, @ returns a list of words)

Variables

Shell has a state, which
includes shell variables

All variables are strings
(but can do math, later)

White space matters - not
spaces around the ‘=’

Create: myVar= or myVar=value
Set: myVar=value

Use: SmyVar

Remove: unset SmyVar

List variables (use ‘set)

Export Variables

Use: export myVar

To make variable available in the
initial shell environment.

If a program changes the value of an
exported variable it does not
change the value outside of the
program

: export -n remove export property

Variables act as though passed by
value

Okay, lets make a script!

First line of file is #!/bin/bash (specifies which interpreter to execute)
Make file executable (chmod u+x)

Run a file ./myNewScript

Shell sees the shell program (/bin/bash) and launches it to run the
script

5. Caninclude

a. String tests (string returns true if non-zero length, string < string, etc.)
b. Logic (&&]],!) - use double brackets

c. Filetests (-d:isdirectory, -f: is file, -w: file has write permission etc.)
d. Math - use double parens

> w b=

Script Arguments & Errors

Script refers to it" argument at Exit your shell with O

i ;S0 is the program
o3 PIog (normal) or 1 (error)
Use ‘shift’ to move arguments

towards left (Si become Si-n)

Exit with no error:

EXIt COdes Use exit orexit O

Exit with error:

Command ‘exit’ exits a shell, and
ends a shell-script program. Userexit 1 or..{1-255}

Quoting Variables
In order to retain the literal value of something use ‘single quotes’
In order to retain all but $, *, \ use “double quotes”

Put $* and $@ in quotes to correctly interpret strings with spaces in them.

Arithmetic

Variables hold strings, so we need a way to tell the shell to evaluate them
numerically:

K=$i+$j does not add the numbers
Use the shell function ((

k=S (($i+383))

Orlet k="$i+$3”

The shell will automatically convert the strings to the numbers

Functions and local variables

name () compound-command [redirections]
or

function name [()] compound-command [
redirections]

Ex:

func1()
{

local var="func1 local'
func2

Stuff to watch out for

White space: spacing of words and symbols matters

Assign WITHOUT spaces around the equal, brackets are WITH SPACES
Typo on left creates new variable, typo on right returns empty string.
Reusing variable name replaces the old value

Must put quotes around values with spaces in them

Non number converted to number produces ‘0’

Conditionals
Binary operators: -eq -ne -lt -le -gt -ge
Can use the [[shellcommand touse <, >, ==

Syntax is a little different, but commands works as expected

if test; then
commands

fi

while test; do

commands
done

for variable in words; do
commands
done

Flow control

test expression or [expression]

if [-f .bash profile]; then
echo "You have a .bash profile.
Things are fine."
else
echo "Yikes! You have no
.bash profile!™
fi

http://linuxcommand.org/lc3_man_pages/testh.html

http://linuxcommand.org/lc3_man_pages/testh.html

Shell-scripting Notes

Bash Scripting

Interpreted

Esoteric variable access
Everything is a string

Easy access to files and program

Good for quick & interactive programs

Java Programming

Compiled

Highly structured, Strongly typed
Strings have library processing
Data structures and libraries

Good for large complex programs

Scripting Style Guide

Scripts should generally be <200 lines "¢ g and doitwelt
Always use spaces, not tabs (indent line with two spaces)
Comment code with ‘#’

https://google.github.io/styleguide/shell.xml

Emacs (text editor)

C-x C-s #save

C-x C-c # quit

C-e # go to end of line

C-a # go to beginning of line
C-x C-f # find a file

C-g #exit menu

C-x C-k # kill a buffer

You can use any text editor
you like. Emacsis amazingly
powerful, and highly
customizable with lisp scripts.
It is probably worth learning.

