
CSE 374 Lecture 9
Declarations, control, printf

Hello World in C
#include <stdio.h>

/**
 * Compile this file with:
 * gcc -o hello hello.c
 */
int main(int argc, char **argv)
{
 printf("Hello, World!\n");
 return 0;
}

➔ Compile: gcc hello.c
◆ creates executable a.out

➔ Or: gcc -Wall -std=c11 -o
hello hello.c
◆ Wall - turns all warnings on
◆ C11 - specifies using C11 standard

libraries
◆ Creates executable hello

➔ Run: ./a.out or ./hello
◆ Exits with ʻ0ʼ (return 0;)

Source File
Structures

// includes for functions & types
defined elsewhere
#include <stdio.h>
#include “localstuff.h“
// symbolic constants
#define MAGIC 42
// global variables (if any)
static int days_per_month[] = { 31,
28, 31, 30, …};
// function prototypes
// (to handle “declare before use”)
 void some_later_function(char, int);
// function definitions
void do_this() { … }
char *return_that(char s[], int n)
{ … }
int main(int argc, char ** argv) { … }

Preprocessor
Pre-processes your C code
before the compiler gets to it.

➔ Follows commands prefaced by
ʻ#ʼ

➔ Includes content of header files
➔ Defines constants and macros
➔ Conditional compilation (not

covered right now)

File inclusion

➔ #include <foo.h>
◆ Searches for foo.h in “system include”

directories (/usr/include, etc)
➔ #include “foo.h”

◆ Starts by searching in current directory (allows
coder to break project into smaller files)

➔ Include include fileʼs preprocessed contents
➔ Recursively include all the includes from

original file
➔ Use gcc -l dir1 to tell gcc to look for

include in dir1

Preprocessor Cont.
Define constants

#define PI 3.14
#define NULL 0 // in stdlib

#define TRUE 1
#define FALSE 0

And macros

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

Constants are ALL_CAPS to
differentiate them from other
variables.

Defined constants will override
variables of the same name used in
the code.

Shadow with another #define, or,
#undef

Declarations
Introduces a name, and defines
properties (such as the datatype)

Does not actually create the named
thing

Things can be declared more than once
(but once per scope)

Often shared, declared in #include files

MUST be declared before they are used.

int count; // an integer called
count

int* countptr;

int count[10]; // an integer
array

int adding(int a, int b);
// function the returns an int

void printing (char *s);

Declarations Cont.
You can put multiple declarations on one line, e.g., int x, y; or int x=0, y;
or int x, y=0;, or …

But int *x, y; means int *x; int y; – you usually mean (want) int *x, *y;

Common style rule: one declaration per line (clarity, safety, easier to
place comments)

Array types in function arguments are pointers(!)

Definitions
Defines properties of item; this
happens only ONCE, even if the
item is declared more than once.

Linker-error will occur if an item is
used but not defined.

To use something before it is
defined, you must declare it before
you use it (forward declaration).

int count=4

countptr = &count;

int count[3] = {1,2,3};

int adding(int a, int b) {
return (a+b);

}

void printing (char *str){
printf("%s\n", str);

}

Values may be numbers (or characters) OR addresses
9 = x; // Nonsense, because 9 isn’t a LOCATION
int x = 1; // Stores the VALUE 1 at a LOCATION which has the LABEL x.
x = 2; // Stores the VALUE 2 at the LOCATION x.
int* xPtr = &x; // Stores VALUE of address of x at a LOCATION labelled xPtr.
*xPtr = 3; // Stores VALUE 3 at a LOCATION defined by address stored in xPtr.
int** xx = &(&x);// Nonsense, the r-value needs to resolve to a value.
 // &x does indeed represent a value (the address x), but
 // &(&x) refers to the address of the address of x -
 // which is just a number and not stored anywhere

L-values v. R-values
Left Side

Evaluated to locations (addresses)

Right Side
Evaluated to values (the contents
at the address)

Definitions
● Int *arrspace = myArr;
● Arrays that rely on run-time info

to determine size are
dynamically allocated to the
heap (and declared *array
syntax)

● Define as NULL until otherwise
defined.

https://www.codewithc.com/underst
anding-c-pointers-beginners-guide/

Initialization
Memory allocation and initialization are not the same thing

Unlike Java, you MUST provide a value to initialize a bit of
memory

It is possible to access un-initialized bits
unlike Java with sets defaults and checks for initialization
best case scenario: you crash

Arrays
● int myArr[10];

○ User must store length (10).
● Int *arrspace = myArr;

○ Implicit conversion
● myArr[3] is ??

○ (Not automatically initialized to
any value.)

● Arrays MUST be declared with a
constant length (the compiler needs to
allocate space)

● Arrays that rely on run-time info to
determine size are dynamically
allocated to the heap (and declared
*array syntax)

arr

arr[3] arr[len-1]

Arrays
Contiguous blocks in memory

Declare as

Datatype arr[len]

Has type

Datatype*

Stores the location in memory of the
first value; when arrays are passed
passes this memory location

 Danger, Will Robinson!!

arr

arr[3] arr[len-1]

arr[len+2]

Pointer: holds address of memory

Control constructs
Similar to Java: if, while, switch

Break, continue, etc.

https://www.gnu.org/software/gnu-c
-manual/gnu-c-manual.html#State
ments

No Boolean type!

Use integers, can declare
constants.

Generally, 0/NULL => False

Anything else => True

https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Statements
https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Statements
https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Statements

I/O : Printf, scanf

➔ Printf (print-format)
➔ int printf(const char *format, ...)
➔ ʻFormatʼ is a string that can contain format tags
➔ + additional arguments to match tags
➔ Number of arguments better match number of %
➔ Corresponding arguments better have the right

types (%d, int; %f, float; %e, float (prints
scientific); %s, \0- terminated char*; … Compiler
might check, but not guaranteed

◆ best case scenario: you crash
➔ printf("%s: %d %g\n", p, y+9,

3.0)

➔ scanf (gets input, formatted)
➔ int scanf(const char *format, ...)
➔ ʻFormatʼ is a string that can contain format

tags
➔ + additional arguments to match tags -

should be pointers to the right data type so
input can be stored in them

➔ scanf(“%d %s”, &n, str);
➔ scanf("%*s %d", &a);

◆ %*s ignores string until space, then reads in
an integer

Printf and scanf are two I/O functions, prototyped in stdio.h

