CSE 374 Lecture 6

Regular expressions and grep

Test #1: Linux

Published today, 11:30am

O

On Canvas

Due Wed. 1/19 11:.00pm
NO LATE SUBMISSIONS
Work on your own, but

Use all available resources
Hints

©)

Catch up on lectures/HW
first

You can submit up to 3 times
First try - take notes of
questions that challenge you
Look up answers

Test code in your shell before
answering

Globbing: the shell filename
expansion; matches some patterns

G '_Obbi ng and Regular expressions (regex): a set of
rules for matching patterns in text
Regex

(We see reqular expressions in math,
as formal grammars in c¢s, and other
variations as well. Different
applications (egrep) my have slightly
different rules.)

Regex theory

1. Asetofrulesfor matching a pattern (P) to a string (S)
2. All strings are made of a combination of the null (empty) set,
the empty string ¢, and a single character.

3. Regular expressions match a string if
3.1. Pisalliteral character (a, b, ...) that matches the string S
3.2. PP matchesSifS=S S, suchthat P, matchesS and P, matches S,
3.3. P |P,matchesSif P, matches S ORP, matches S
3.4. P* matches S if thereis anisuch thatP...P (i times) matches S.
Includes i=0 which matchese.

Regex rules

Regular expressions have

Characters: the literal characters [a b 9] (Sis an exact duplicate of P)
Anchors: sets the position in the line where P may be found (* or §)

Modifiers: modify the range of text P may match (* or [set_of_chars])

Note: Regex details & implementation may vary between application, but general rules
apply.

Regex special characters (some are \escaped)

\ : escape following character
‘> : matches any single character at least once
p,|p, : matches p, ORp,

“*: matches zero or more of the previous p

‘?’” matches zero or one of the previous p (8| p)

‘+’: matches one or more of previous p (pp*)

() : group patterns for order of operations

{}:

[] : contain literals to be matched (single or
range)

A2 Anchors to beginning of line
S :anchors to end of line

<>:word boundaries

Classes of characters

== any character

[A-Z] == A, B, C, D .

[6-9] == 0,1,2,3,4,5,6,7,8,9

abc == literally abc

“ Z

Z

c.t . cat, cut, cota
[Hh]ello! - Hello!, hello!
[BLERG] -> B, L, E, R or G

[6-5][5-9] - 15,16,17,18,19
25,26,27,28,29
35,36,37,38,39
45,46,47,48,49
55,956,57,958, 59

Repipipititition

* == zero or more, a* - {, a, aa, aaa, aaaa, ..}

+ == one or more, a+ - {a, aa, aaa, ..}

? == zero or one of the preceding, a? - {, a}

{n} == exactly n repetitions of the preceding, a{3} - aaa
alb == a or b, this|that|when|how - this, that, when, how

All but | are POSTFIX OPERATORS (they come after the pattern)

Invisible characters

A == the start of a line
§ == the end of a line
\t == a tab

? == zero or one of the preceding

Extras

[Mabc] : matches everything NOT abc

“*’ . is greedy; matches as much as possible

Grep - a program to do matching using

g rep regular expressions

Grep -e / egrep - uses extended regex

(run man grep now!)

Grep Regex
By default, grep matches each line against *p.*

You can anchor the pattern with » (beginning)
and/or S (end) or both (match whole line
exactly)

These are still “real” regular expressions

Backreference & repeated matches

Up to 9 times in a pattern, you can group with (p) and refer to the matched text later!
You can refer to the text (most recently) matched by the nth group with \n.
Simple example: double-words *\([a-zA-Z]*\)\1S

You cannot do this with actual regular expressions; the program must keep the previous
strings.

\(p\)\{n\} will match the p n times. \{n,m\} matches at least n, but not more than m
times.

Bash Regex Gotchya's

e Modern (i.e., gnu) versions of grep and egrep use the same regular
expression engine for matching, but the input syntax is different for

historical reasons
o Forinstance, \{ for grep vs { for egrep - See grep manual sec. 3.6

e Must quote patterns so the shell does not muck with them - and use single

quotes if they contain § (why?)
e Must escape special characters with \ if you need them literally: \. and . are

very different
o Butinside [] many more characters are treated literally, needing less quoting (\
becomes a literal!)

