CSE 374 Lecture 3

Emacs and I/O Redirection

HWo

vl

Due on Monday

Goal: ensure that you can use the tools we need for this course

€ Ifyou have problems, follow up to correct them ASAP.

Debugging: in this course you need to work more independently. Use all
the resources you have to find answers.

€ Ex: scp-how could you figure out that command?

Note about autograding: Autograding is wonderful for fast feedback, but,
can be really challenging to give meaningful feedback & account for all
variability.

€ Notall assignments will be entirely autograded

Bash (shell) Language

e Bash acts as a language interpreter
o Commands are subroutines with arguments

o Bash interprets the arguments & calls
subroutine
o Bash also has its own variables and logic

Input >

Process

Output>

BASH applies its own processing
to the I/0 text - ‘globbing’

Special Characters

e Directory Shortcuts History, or
O ~uname or ~
o ./or../

e Wildcards - qeo@@mg

o 0ormorechars:*
o Exactly 1char:?
o Specified chars: [a-f]

Special Characters

1><&| *~[]“¢" §]

\ Is escape
character

“string”

‘string’

e
—>

What do they all
mean?

Would substitute
things like SVAR

Suppresses
substitutions

Shell Behavior

All redirection & string expansion or substitutions
are done by the shell, before the command.

Command only sees resulting 1/O streams.

Processes have two

OUTPUT
Processes all destinations, the
can take INPUT default being StdOut
and StdErr. You can
i?ur?cce),nfhe - P rocess think of these as two
default being ‘ potential files to
Stdin. which a processes
can write.

You can also write to
different files instead of

But, instead of 2> StdErr or StdOut. The >’
using Stdin you symbol means to putinan
i < new file, while >>" means
:i:l L‘Jrseed?r?clz‘j’lli(fc“,in P ro CeSS to append to the end of a
by using the ‘<’ file. The 2’ specifies that
>> you want iostream ‘2’, or
0

symbol (pointing \
towards process). the error stream.

|/0 Streams

e All bash commands have three

streams

o 0-stdin [keyboard]

o 1-stdOut [screen]

o 2-stdErr [screen]
e Canredirect streams

o <yourlnput
>yourOutput
>> appendYourOutput
2>yourError
&> yourOQutput&Error
And more...

o O O O O

Special File /dev/null

o IsEoFifinput
o Dataisdiscarded if output

Can combine one cmd to the next

o Cmdl|cmd2 - pipe output of cmd1
into input of cmd2

o Cmdl; cmd2 - do one after another

o Cmdl cmd2’ - use output of cmd2
as argument to cmdl

Can use cmd logic

o Cmd1||cmd2-do cmd2 if cmdl fails
o Cmdl&&cmd2-docmd?2ifcmdl
succeeds

Some Bash redirection syntax

redirect stdout to a file - command > output
redirect stderr to a file command 2> output
redirect stdout to stderr command 1>&2 output
redirect stderr to stdout command 2>&1 output
redirect stderr and stdout to a file command &> output

Reading:Bash Redirections (spec), bash hackers redirections (examples)

https://www.gnu.org/software/bash/manual/html_node/Redirections.html
http://wiki-dev.bash-hackers.org/syntax/redirection

pipes

drawings. jvns. co

3.5.4 Command Substitution

Command substitution allows the output of a command to replace the command itself. Command substitution occurs when a command is
enclosed as follows:

$(command)
or

" command”

Sous EVANS
@bOrk

by executing command in a subshell environment and replacing the command substitution with the

and, with any trailing newlines deleted. Embedded newlines are not deleted, but they may be removed

Somekimes you want
10 send the autpst of one

Process to the input of ansther

5 s | we -1
53

" 53 files ¥
°

O pipe is o pair

of 2 magical

file descriptors
@and @

/"‘S_,)wc\
stin ® © sHout

qs-] mmand substitution $(cat file) can be replaced by the equivalent but faster $(< file).
when {s does
write(®s, “hi")
WC can read it!
read(e)
- \.\h; nh

e form of substitution is used, backslash retains its literal meaning except when followed by ‘$’, <>’ or “\".

«ded by a backslash terminates the command substitution. When using the $(command) form, all characters
e up the command; none are treated specially.

be nested. To nest when using the backquoted form, escape the inner backquotes with backslashes.

thin double quotes, word splitting and filename expansion are not performed on the results.

PiPe buffers

T'm gonna write
a ba\jil\.’or\ bydes
to @

Uh no if m
bU‘F'Fer is foll you

have to wait

what if your
tacaet process dies?

Is we

2N 7\
9

Is gets sent
SIGPIPE it @ gebs

closed U.s usuauy dues)

YoV Can pipe
SO MANY "Hunas
+oae+her

$ alblcldle

ARRAA
N7~
Pai f

Pl

oL
2N
o

®
\jo &~

P O,

o
es

o

Alias

Defines a shortcut or ‘alias’ to (Essentially a really easy script)
a command.

Also, ‘alias’

.bashrc

Variables & Alias

Define variable Alias cheer="echo yahoo\!”

i=15
Access variable
Si

Undefined variable is empty string

Towards Scripts

Shell has a state (working directory, user,
aliases, history, streams)

Can expand state with variables
‘Source’ runs a file and changes state
Can run a file without changing state by
running script in new shell.

Emacs (text editor)

C-x C-s #save

C-x C-c # quit

C-e # go to end of line

C-a # go to beginning of line
C-x C-f # find a file

C-g #exit menu

C-x C-k # kill a buffer

You can use any text editor
you like. Emacsis amazingly
powerful, and highly
customizable with lisp scripts.
It is probably worth learning.

Okay, lets make a script!

First line of file is #!/bin/bash (specifies which interpreter to execute)
Make file executable (chmod u+x)

Run a file ./myNewScript

Shell sees the shell program (/bin/bash) and launches it to run the
script

5. Caninclude

a. String tests (string returns true if non-zero length, string < string, etc.)
b. Logic (&&]],!) - use double brackets

c. Filetests (-d:isdirectory, -f: is file, -w: file has write permission etc.)
d. Math - use double parens

> w b=

Script Arguments & Errors

Script refers to it" argument at Exit your shell with O

i ;S0 is the program
o3 PIog (normal) or 1 (error)
Use ‘shift’ to move arguments

towards left (Si become Si-n)

Exit with no error:

EXIt COdes Use exit orexit O

Exit with error:

Command ‘exit’ exits a shell, and
ends a shell-script program. Userexit 1 or..{1-255}

Variables useful in a script

S# stores number of parameters (strings) entered

S0 first string entered - the command name

SN returns the Nth argument

$? Returns state of last exit

$* returns all the arguments

S@ returns a space separated string with each argument

(* returns one word with spaces, @ returns a list of words)

