
CSE 374: Lecture 28
Profiling and memory

Administrative Notes

● HW6 & HW7
○ While you have time to submit still, youʼll be doing us a kindness if you get things in

earlier.
● Exam is posted after class today

○ Only multiple choice / short answer
● Office Hours

○ Between ~10:30 & 12 on Monday (I have a meeting before & after, but will be on
zoom for as long as possible - check Canvas for link).

○ Tuesday - limited zoom time by request

Course Take-aways
➔ Confidence
➔ You know enough to believe that you can figure out solutions
➔ You know some basic commands to get started
➔ You know some ideas to start searching
➔ You know about ʻmanʼ
➔ You have some good resources (Pocket Guide/cplusplus.com)
➔ You know about processes and how to link them
➔ Youʼve practice breaking down problems to come up with a tool chain
➔ Youʼve seen enough C & C++ to picture alternate computer languages
➔ Youʼve practice with memory to understand how the computer might work

When to use
which language?

Particle Swarm Optimization
● Particle swarm optimization (PSO) is a population based stochastic

optimization technique developed by Dr. Eberhart and Dr. Kennedy in 1995,
inspired by social behavior of bird flocking or fish schooling.

● Used to find the global optimum of potentially non-convex functions.
○ Optimize control settings (intelligent control)
○ Fit data to functions (machine learning)
○ Find low energy solutions

■ Low energy often matches the natural solution (protein structures)
● Function optimization is usually an iterative algorithm

○ Coding inefficiencies add up.

http://www.engr.iupui.edu/~eberhart
http://www.particleswarm.net/JK/

Finding minima

Code

int main() {

 float* opt;
 …
 printf("Starting PSO on Sphere\n");
 opt = optimize(spherefunc, mins, maxs);
 …
 return 0;
}

// spherefunc min at 0,0
float spherefunc(float* pos) {
 return pos[0]*pos[0] + pos[1]*pos[1];
}

float* optimize (float(*obj)(float*), float* mins, float* maxs);

Code

int main() {

 float* opt;
 …
 printf("Starting PSO on Sphere\n");
 opt = optimize(spherefunc, mins, maxs);
 …
 return 0;
}

// spherefunc min at 0,0
float spherefunc(float* pos) {
 return pos[0]*pos[0] + pos[1]*pos[1];
}

float* optimize (float(*obj)(float*), float* mins, float* maxs);

Review Opportunity:

float(*obj)(float*)

 -- function pointer from
float* to float

Not to be confused with code or algorithm
optimization
Minimize memory usage, computation time, or both

● Examination of behavior of a running program
● Tally of memory allocation
● Record of run time, including breakdown of where the time is spent.

Can use a variety of techniques (hardware interrupts, code tooling, performance counters)
Trace: stream of recorded events, proportional to execution time
Profile: statistical summary of event, proportional to code size

Basics
1. Write code
2. Run test cases (benchmarks)
3. Python clint.py
4. Valgrind

Benchmarking v. Profiling
Benchmarking collects statistics on specific sample problems

(Ex. objective functions are standard benchmark functions for optimization)

➔ Number of iterations until convergence
➔ Likelihood of finding solution
➔ Run time
➔ Memory usage

Benchmarking can be very useful for measuring performance on subsequent deliveries

Profiling Tools
● Investigate run-time behavior of code at different points
● Checks time taken by instructions from machine language to high-level

functions
○ actual time
○ number of calls to the instruction

● Flat profiler - computes average call times, does not break down calls
● Call graph profiler - shows chains based on called functions

Insertion v. Sampling profilers
Insertion:

● Place specific profiling code in
program

● Can be used on various platforms
● Accurate
● Requires recompilation and

relinking
● Will affect performance

Sampling:

● Monitoring or snap-shotting at
specific intervals

● No modification of code
● Less accurate - limited by

sampling rate
● Very small methods often missed
● Not great for memory

$gprof
Gnu profiling tool

Compile with $gcc -pg flag

$./mainopt

Creates gmon.out

Run profiler with
$gprof ./mainopt

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 64.87 0.22 0.22 2040000 0.00 0.00 update_vel
 14.74 0.27 0.05 2008462 0.00 0.00 rastrigin
 11.79 0.31 0.04 2040000 0.00 0.00 update_pos
 5.90 0.33 0.02 102 0.20 3.34 optimize
 2.95 0.34 0.01 51000 0.00 0.00 update_gb
 0.00 0.34 0.00 20132 0.00 0.00 rosenbrock
 0.00 0.34 0.00 20131 0.00 0.00 spherefunc
 0.00 0.34 0.00 102 0.00 0.00 initialize_opt

$valgrind --tool=callgrind
$valgrind --tool=callgrind ./mainopt

Creates callgrind.out.X
You can read output file

But its tricky; try:
$kcachegrind callgrind.out.X

(Must install cachegrind:
$sudo yum install kcachegrind
Or, on Ubuntu:
$sudo apt-get install kcacehgrind

$valgrind --tool=callgrind
$valgrind --tool=callgrind ./mainopt

Creates callgrind.out.X
You can read output file

But its tricky; try:
$kcachegrind callgrind.out.X

(Must install cachegrind:
$sudo yum install kcachegrind
Or, on Ubuntu:
$sudo apt-get install kcacehgrind

Review Opportunity:

$sudo yum install kcachegrind

What does sudo do?
What about yum install?

Observe
● Which methods are being called the most

○ these may not necessarily be the "slowest" methods!
● Which methods are taking the most time relative to the

others
○ common problems

■ inefficient unbuffered I/O
■ poor choice of data structure
■ recursion call overhead
■ unnecessary re-computation of expensive

information, or unnecessary multiple I/O of same
data

Please fill in your
course reviews!

Thank You

