
CSE 374 Review



class Square : public Rectangle {
public:
  Square(); // default
  // constructor, not conversion
  explicit Square(int s);
  // destructor 
  virtual ~Square();  
};



Bank Account ex.
● Static fields. A bank account has an associated ID number, which is automatically generated when the account is 

created. So, we added a static field accountCount_ to the BankAccount class. The "static" keyword means that there is 
only ONE variable for all objects of this class, not one per object like normal fields. We can use the accountCount_ to 
generate a unique ID number in the constructor by using that count as the ID and then incrementing the count by 1. 

● Deleted constructors. Remember C++ automatically generates a "copy constructor" for your class if you do not provide 
one. However, making copies of the account would be a really bad thing! So we can declare a copy constructor in the 
header file and set that constructor "= delete;", which means we "delete" it and prevent it from being used anywhere in the 
code.

● Pure virtual functions. A "bank account" is a general concept; if you go into the bank and ask to open a bank account, 
they'll ask "what kind?" Each type of accounts has a slightly different implementation of withdrawal. All accounts do have 
the ability to withdraw, but since each type of account has a different implementation, we'll declare the withdraw() function 
but NOT provide an implementation. We do this as follows by declaring the function "virtual" and setting it equal to 0:

virtual void withdraw(int amount) = 0;

● This is called a "pure virtual" function, and it make this BankAccount class equivalent to Java's abstract class! Any 
subclass of BankAccount will have to implement the withdraw() function.



Savings Account

● We provide a constructor that gives more information than just the 
BankAccount's constructor - a SavingsAccount also generates interest, 
so we have an interest rate associated with the account.

● The derived class can add additional functions, like getInterestRate().
● The derived class adds an implementation of the withdraw() function 

from the base class BankAccount. We mark this function "override" so 
the compiler verifies that we've done the overriding correctly.



(Up) casting

● An object of a derived class cannot be cast to an object of a base class.
○ For the same reason a struct T1 {int x,y,z;} cannot be cast to type 

struct T2 {int x,y;} (different size)
● A pointer to an object of a derived class can be cast to a pointer to an 

object of a base class.
○ For the same reason a struct T1* can be cast to type struct T2* (pointers 

to a location in memory)
○ (Story not so simple with multiple inheritance)

● After such an upcast, field-access works fine (prefix)
○ but what do method calls mean in the presence of overriding? (see virtual)



(Down) casting

● C pointer-casts: unchecked; be careful
● Java: checked; may raise ClassCastException 
● New:  C++ has “all the above” (several different kinds of casts)

○ If you use single-inheritance and know what you are doing, the C-style 
casts (same pointer, assume more about what is pointed to) should 
work fine for downcasts

○ Worth learning about the differences on your own 



C Datatypes Primitive types (numerical)

Derived types (pointers / arrays)

Variables in C have a type, which 
defines the size of the memory 
block and how to decode the 

memory



C Datatypes

Primitive Datatypes:

● Integral types
○ Char (1 byte), short, int (2-4 bytes), long
○ ʻUnsignedʼ removes negative, doubles maximum #

https://en.wikipedia.org/wiki/Two%27s_complem
ent

● Floats, doubles, long doubles 
● Type promotion - moved to a higher precision type / no 

dataloss.  If cast to a lower precision type it is 
truncated.

Notice:  in Bash, 
variables are untyped

Essentially every 
variable is a string

Can be cast to a 
number under some 
circumstances

C11 std:  _Bool defines booleans
No Bool in old standards 
Use stdbool,  or 
typedef enum {false, true} bool;

https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdbool.h.html


C Derived Types (made from primitive types)

Functions types (returns a type)

Pointer types (points to a type)

Array types (lists of a type)

Structure types (contains types)

Union types (holds different 
types)

(Pointers store an integer # (of size 
uintptr_t), the type dictates how 
operations on the pointer behave.

Array types point to the beginning 
of a list of values, they resolve to a 
pointer.



Structures

Structures are 
containers for holding 
multiple variables 
together.

Organize data.

Facilitate passing and 
tracking data.

Have data type ʻstructʼ
with a ʻtagʼ name.

struct fraction { 
int numerator; 
int denominator; 

};
struct fraction weeks_left;
weeks_left.numerator;

struct fraction w1, w2; // declare two fractions 
w1.numerator = 2; 
w1.denominator = 7; 
w2 = w1;  // copy struct

struct fraction *w3;,
(*f3).numerator = 4;  OR  f3->numerator = 4;
Struct fraction *part = w3; // points to same 
address



typedef

Introduces short-cut 
or alias to a data 
type.

typedef <type> <name>;

typedef struct fraction { 
int numerator; 
int denominator; 

} fraction;
fraction x1;

typedef struct treenode { 
int data; 
struct treenode branches[9];

} TreeNode;

typedef enum {false, true} bool;



Dynamic memory 
allocation

void* malloc(size_t size) 
Request a contiguous block of 
memory of the given size in the heap. 

void free(void* block) 
The mirror image of malloc() -- free 
takes a pointer to a heap block earlier 
allocated by malloc() and returns that 
block to the heap for re-use.



Memory sections

● Code & global memory allocated statically at start up
● Stack memory allocated as functions are called

○ Sizes must be known at compile time

● Heap memory is allocated dynamically (upon request)
○ Sizes can be determined at run time

Address ʻ0ʼ
Address ʻ4ʼ

Address ʻ264-1ʼ or ʻ232-1ʼ

code heap ->globals <- stack



Using the Heap

● Do this when you donʼt know how much space you need in advance
○ Variable length arrays
○ Growing lists or trees
○ Making flexible structs

● Malloc
○ Requires an integer specifying the needed number of bytes (often an uintptr_t)
○ Returns an address (another uintptr_t)
○ Address can be cast to a pointer to a specific type

● Free
○ Takes an address, and returns the chunk to the available memory list



Common problems

● Dangling pointers
○ Happens when you have an active pointer to freed memory
○ Stack memory in a popped frame
○ Freed heap memory

● Accessing a Null pointer
○ Happens when you try to use a pointer before it has been allocated
○ Or when allocation fails

● Forgetting to free memory
○ Causes a memory leak
○ Check struct de-allocation so that every dynamically allocated attribute is also freed

● Losing your pointer
○ Accidentally re-assigning your pointer to a new address
○ Use a current pointer to traverse a tree but be sure to keep a copy of the root unmodified



Multi-file 
Projects Modules & Makefiles



C Modules

● Module:  smallest coherent unit of a C program
○ One *.c file and *.h file
○ Set of self-contained / closely related functions: clear functionality
○ gcc -o foo-executable foo.c

● Project:  can be made of many modules
○ gcc -o fooproject-executable foo.c bar.c
○ Can also compile individual object files  for each module, then link 

together

● Modules are connected to each other with header (.h) files



Header Files

● Each Module has a .c file and a corresponding .h file
● Header files should always use include guards:

○ #ifndef MODULE_H #define MODULE_H and end with: #endif
● All declarations needed to use the module are in the header file
● Header file has only declarations and is included in the .c file
● Project-wide variables are declared with extern in header and defined in .c
● Internal declarations go in the .c file, not the header file

○ Declared with static
● Header file should include all other files needed by that header file
● Headers needed only for the .c file to compile go in the .c file
● Header files should compile on their own

Citation:http://www.umich.edu/~eecs381/handouts/CHeaderFileGuidelines.pdf?#:~:text=The%20header%20file%20contains%20only%20declaratio
ns%2C%20and%20is%20included%20by%20the%20.&text=Put%20only%20structure%20type%20declarations,c%20file.



Making Projects

Compiler actually runs in stages:

a. Preprocessor
b. Compiler
c. Assembler
d. Linker

There are other tools to manage this:

● IDEs
● Projects
● Ant



Makefiles

● Figure out dependencies using gcc -MM
● Create targets for each moduleʼs object 

file
○ Using gcc -c

● Create target for project executable
○ Depends on all those object files

● Can also create different targets
○ Different builds
○ Project variations
○ Testing
○ Phony targets (clean)

# Makefile for mem memory system

CC = gcc
CARGS = -Wall -std=c11

all: bench

# basic build
bench: bench.o getmem.o freemem.o 
getmemstats.o printheap.o 
memutils.o

$(CC) $(CARGS) -o bench $^

# object files
bench.o: bench.c mem.h

$(CC) $(CARGS) -c bench.c

<... for all the object files …>

debug: CARGS += -g
debug: bench

## Utility targets
test: debug

./bench 10 50

clean:
rm *.o *~ 



Miscellaneous 
Notes



shebang
#! - called ʻshebangʼ

Use it in the first line of a script to indicate which program should be used to run

#!/bin/bash

Note:  for our scripts ʻbashʼ is the default program to run, so it this is missing they will 
still be executed by bash.  However, specifying /bin/bash will ensure that bash is always 
used, even if the script is called from a different shell.

Clint.py has #!/usr/bin/python in the first line

Specifies that python is the program that is used to run the script

Change to #!/usr/bin/python2 if you are having trouble using clint on a computer 
running python3.


