
CSE 374: Lecture 24
C++ Classes

Week 9

Finish Test 4

Resubmit HW5 if necessary

HW6:

● Partner git repositories made
● Get started soon

Check Canvas and grades

Header File Review

Headers contain

● #includes that are needed for the
header to compile

● #macros that may be needed by calling
code

● Datatype (struct, typedef) that are
needed for the interface definition

● Function declarations that define the
interface

Headers do not contain

● #includes that are only needed within
the module code

● Datatypes that are only needed within
module

● ʻPrivateʼ function declarations
● Function definitions

Headers exist to define an interface to a module.

Header File Review

● Only include the headers that are
necessary for the code.
○ Well defined headers control

access to modules - mimic
encapsulation

○ mem_impl.h is for ʻinternalʼ stuff
○ Only include mem.h in bench

(calling module)

● Donʼt forget

#ifndef HGUARD
#define HGUARD
…
#endif

Donʼt ʻover-includeʼ

C++ Hello, World!
#include <cstdlib>
#include <iostream>

const int CURRENT_YEAR = 2019;

using namespace std;

// REFERENCE
void pig(string& s) {
 char first = s[0];
 s = s.substr(1);
 s += first;
 s += "ay";
}

int main() {
 // stack-allocated array: int arr[100];
 // C++ style heap allocation:
 int* arr = new int[100];

 // C++ style array deletion:
 delete [] arr;
 // Use "delete x;" for things non-arrays.

 cout << "What is your name? ";
 string name;
 cin >> name;
 pig(name);
 cout << "What year were you born? ";
 int year;
 cin >> year;
 const int age = CURRENT_YEAR - year;
 cout << "Hello, " << name << "!" << endl;
 cout <<"You’re "<<age<< " years old"<< endl;
 return EXIT_SUCCESS;
}

So, what different with C++?
● File Names (instead of *.c)

○ *.cc or *.cpp or *.cxx
● Compiler (instead of gcc)

○ $g++
● Preprocessor (still uses C

preprocessor)
○ But #include <cstdlib>

● Still use *.h for header
files

● Basically does the same
thing as <stdlib.h>

Namespaces
● Group code logically
● Can re-use names for each

namespace
● Can nest namespaces
● Disambiguate with :: syntax
● Can avoid using the prefix with

using namespace foo
doSomething(3)

● If you are using a namespace in a
header, you must also use the
namespace in the source code (.cpp)

namespace foo {
 int doSomething(int x);
}

namespace bar {
 int doSomething(int x);
}

int main() {
 foo::doSomething(3);
 bar::doSomething(3);
}

I/O in CPP
Std library include a cout and a cin
function

Operators ʻ>>ʼ and ʻ<<ʼ act like shell
redirection

Operators ʻ>>ʼ and ʻ<<ʼ take left and right
operands and return a stream

Use namespace std or

use std::cout & std::cin

using namespace std

cout << "What is your name? ";
string name;
cin >> name;

cout << "When were you born? ";
int year;
cin >> year;

Pass by reference
● In C: all function arguments are copies

○ Pointer arguments pass a copy of the address value

● In C++: Can do the above
○ but can also use a “reference parameter” (& character before var name)
○ As though the calling line wrote pig(&name) and in ʻpigʼ every ʻsʼ is a ʻ*sʼ

void pig(string& s) {
 char first = s[0];
 s = s.substr(1);
 s += first;
 s += "ay";
}

 string name;
 cin >> name;
 pig(name);

Const
In C++ we also have the new "const" keyword, which says "this thing must not
change". We can use this to declare global constants:

 const int CURRENT_YEAR = 2018;

Global constants look a lot like global variables, but they are OK stylistically
whereas regular global variables are not because the "const" keyword says that this
value CANNOT CHANGE.

 // This won't compile.
 CURRENT_YEAR = 2038;

New / delete
In C:
 int* arr = (int*) malloc(sizeof(int) * 100);
 free(arr);

In C++, we have a nicer syntax for this that does the same thing:
 int* arr = new int[100];
 delete [] arr;

We can also do this for non-array types:
 int* x = new int(4); // x stores the value 4.
 delete x;

New / delete
In C:
 int* arr = (int*) malloc(sizeof(int) * 100);
 free(arr);

In C++, we have a nicer syntax for this that does the same thing:
 int* arr = new int[100];
 delete [] arr;

We can also do this for non-array types:
 int* x = new int(4); // x stores the value 4.
 delete x;

ʻ new ʻ is an operator, not a function. The operator
allocates memory, and then calls a constructor if
appropriate.
● Can even initialize primitive data types
● Throws an exception if it fails (not does return NULL)
● Returns memory of the desired type, not an untype

pointer
● Required size calculated by compiler, not calculated
● ʻ malloc ʻ does not all a constructor

Arrays
● Create a heap-allocated array of objects: new A[10];

○ Calls default (zero-argument) constructor for each element
○ Convenient if thereʼs a good default initialization

● Create heap-allocated array of pointers to objects: new A*[10];
○ More like Java (but not initialized?)

● As in C, new A() and new A[10] have type A*
● new A* and new A*[10] both have type A**
● Unlike C, to delete a non-array, you must write delete e
● Unlike C, to delete an array, you must write delete [] e

C Structs: Not object-oriented
typedef struct person {
 char* name;
 int age;
} person;

person* makePerson (char *name, int a) {
 person* p = (person*) malloc (sizeof (person));
 p->name = (char*) malloc (MAX_NAME+1);
 strncpy (p->name, name, MAX_NAME);
 p->age = a;
 return p;
}

person *p2;
char name[MAX_NAME];
int age;
// fill name, age
p2 = makePerson (name, age);

Notes:
 Not self contained
 need to allocate heap memory so object will persist
 need to allocate memory for the string
 Unless you statically declare (char name[MAX_NAME])

C++ classes: object-oriented
class String {

public:
 String();
 String(const String& other);
 String(const char* raw);
 virtual ~String();
 String& operator=(const String& other);
 size_t length() const;
 void append(const String& other);
 void clear();

friend std::ostream&
operator<<(std::ostream& out, const String& s);

 private:
 void makeNewRaw(size_t length);
 char* raw_;
};

Classes - can define fields and methods

Class layout

Classes
● Like Java

○ Fields vs. methods, static vs. instance, constructors
○ Method overloading (functions, operators, and constructors too)

● Not quite like Java
○ access-modifier (e.g., private) syntax and default
○ declaration separate from implementation (like C)
○ funny constructor syntax, default parameters (e.g., ... = 0)

● Nothing like Java
○ Objects vs. pointers to objects
○ Destructors and copy-constructors
○ virtual vs. non-virtual (to be discussed)

Class Constructors (4 types)

● A default constructor takes zero arguments. If you don't define any constructors for
your class, the compiler will generate one of these constructors for you.

● A copy constructor takes a single parameter which is a const reference (const T&)
to another object of the same type, and initializes the fields of the new object with
a COPY of the fields in the referenced object.

● User-defined constructors initialize fields and take whatever arguments you like.
● Conversion constructors are constructors that take a single argument. For our

string example this is like:
String(const char* raw);
String s = "foo";

Copy Constructors
● In C, we know x=y or f(y) copies y (if a struct, then member-wise copy)
● Same in C++, unless a copy-constructor is defined, then do whatever

the copy-constructor says
● A copy-constructor by definition takes a reference parameter (else

weʼd need to copy, but thatʼs what weʼre defining) of the same type
● Copy constructor vs. assignment

○ Copy constructor initializes a new bag of bits (new variable or
parameter)

○ Assignment (=) replaces an existing value with a new one
■ may need to clean up old state (free heap data?)

https://www.w3schools.com/cpp/cpp_function_reference.asp

Implicit constructors & destructors
Conversion constructors are implicit:
automatically applied when a
constructor is called with one
argument.

If you want a single argument
constructor that is not implicit, must
use
explicit String(const
char* raw);

Destructors are used by
ʻdeleteʼ to clean up when
freeing memory.

Virtual ~String();

You do not call destructors
explicitly

Stack v. Heap
Java: cannot stack-allocate an object (only a pointer to one; all objects are
dynamically allocated on the heap - all objects are pointers to objects)

C: can stack-allocate a struct, then initialize it (An actual object)
C++: stack-allocate and call a constructor (where this is the objectʼs address, as
always, except this is a pointer) Thing t(10000);

Java: new Thing(...) calls constructor, returns heap allocated pointer
C: Use malloc and then initialized, must free exactly once later, untyped pointers
C++: Like Java, new Thing(…), but can also do new int(42). Like C must deallocate,
but must use delete instead of free. (never mix malloc/free with new/ delete!)

Subclasses
● Polymorphism. In essence, polymorphism is the ability access different objects through the same interface.

For instance, if you have an interface that represents an electronic device, that interface would have the
ability to turn the device on and off. You can use the actual physical types - computer, phone, television, etc
- as if they were an electronic device, because they all have the on/off capability.

● Inheritance. This is one of the meatiest pieces of OO programming. Inheritance allows the sharing of
BEHAVIORS. For instance, a Square is a type of Rectangle, and has the same way to compute its area
(width times height) - therefore by make Square inherit from Rectangle, we can share that behavior and
avoid duplicating the code.

