
CSE 374: Lecture 22
Memory Management

Week 8 - almost there.

Notes

Review
Test 3

Compile for use with gdb:
$ gcc -g -Wall -std=c11 -o mystery5 mystery5.c

Homework 5

● GO BACK AND WATCH THE DEMOS
● Copy strings: strncpy(dest, source, strlen(source)+1);
● Interpretations of common errors often can be found with a web search
● Its worth fixing the easy stuff if you canʼt figure out a bug; sometimes it solves your problem.
● Every malloc needs a free.

Notes from Office Hours
● There is a starter code in git repository. Make sure to check those out.

○ Also true for HW6 & HW7)
● It is okay if you want to have extra c files or whatever, but the files in the starter

code are sufficient. You are not expected to write extra files.
● Follow the spec to generate messages when there is no more T9noyms.
● Watch and re-watch lecture on linkedlist, read the sample code to get an idea.
● You can test out your Makefile on your machine - no need to submit to

gradescope.
○ You can also follow suggestions about how to build a test suite which looks

a lot like our autograder
● When running valgrind, make sure to actually pass in the dictionary and do

several pattern matches. If you just do ./t9, you will not find memory leaks.

Allocating array memory
An array IS a pointer

A String is an array of char,
terminating with \0

strsize returns length of
string, minus the final \0
character

Allocate enough space for
(strsize+1) chars

// copy original string

int strsize = strlen(s)+1;
// result = (char *)malloc(strsize);
result =(char*)malloc(strsize*sizeof(char));
printf ("sizeof char: %d \n", sizeof(char));
strncpy(result, s, strsize);

// from final_reverse.c, lect. 11

Using pointer manipulation for good
void fill_mem (void* ptr, size) {

 uintptr_t memadd = (uintptr_t) ptr;
 for (int i=0; i<16 && i <size; i++) {

 ((unsigned char)(memadd+1)) = 0xFE;

 }
}

Buffer Overflow

What is buffer overflow?

ʻGetsʼ doesnʼt check for buffer
size; if the string is more than
8 characters, it will write onto
the memory at the end of buf.

Why is that so bad? (see the
stack!)

void echo() {
 char buf[8];
 gets(buf);
 puts(buf);
}

The stack
Stack stores active functions & local variables
Each function gets a frame, moving down in memory
Last frame is completed, deleted
 then the next most recent frame.
 (Last in-first out)
Each function call creates a frame
 Containing:

Arguments, return address,
Pointer-to-last-frame,
local variables

<- stack

Buffer Overflow

Writing past buf may overwrite
other data, or the pointer to
return to the calling code.

void echo() {
 char buf[8];
 gets(buf);
 puts(buf);
}

Change return to last frame
void bufferplay (int a, int b, int c) {
 char buffer1[5];
 uintptr_t ret; // holds an address

 // calculate the return address
 // change to be address of return
 ret = (uintptr_t) buffer1 + 0;

 // treat that number like a pointer,
 // and change the value in it
 ((uintptr_t)ret) += 0;
}

int main(int argc, char** argv) {
 int x = 0;
 bufferplay (1,2,3);
 x = 1; // want to skip this line
}

Use GDB:

break bufferplay
x buffer1 // prints the location of buffer1
info frame // Look at "rip" to get the
 // location of the return address
print <rip-location> - <buffer1-location>
 // prints distance from buffer1 to return
 // address.

disassemble main // shows the machine
 // code and how many bytes each
 // instruction takes up.

Replace command at return address
int bar(char *arg, char *out) {
 strcpy(out, arg);
 return 0;
}
void foo(char *argv[]) {
 char buf[256];
 bar(argv[1], buf);
}

int main(int argc, char *argv[])
{
 foo(argv);
 return 0;
}

Idea:

Pass program a string in argv that
contains nefarious code in a string

Take advantage of unprotected strcpy
function so the return pointer on the
stack is directed at the beginning of buf

When ʻfooʼ exits, return ptr actually
starts executing code passed in via
string.

Defense against the dark-arts

● Avoid vulnerabilities in the first place.
○ Use library functions that limit string lengths
○ fgets instead of gets
○ strncpy instead of strcpy
○ %ns instead of %s in scanf

● System-level protections
○ Make stack non-executable
○ Have compiler insert “stack canaries”
○ Put a special value between buffer and return address
○ Check for corruption before leaving function

HW6
Forming teams NOW (on
Canvas)

** No Late Submissions **

Project Due March 7

HW6
In C: malloc and free are wrappers
to system calls that reserve space in
memory, or cancel the reservation.

(System calls deal with memory
management, I/O stream management,
access files, access the network.)

But malloc and free are more user
friendly than the essential system calls.

Implement equivalents:

// acts like ʻmallocʼ and returns address in
memory
void* getmem(uintptr_t size)
// acts like ʻfreeʼ and releases memory
void freemem(void* p)

Note:
Uintptr_t is an integer type that holds
a pointer.
void* is a pointer to an unspecified type

HW6: Approach
1. We use a system call (aka malloc) to get a big chunk of memory - like 4k-10k bytes.
2. We then parcel out pieces of this chunk to individual calls to getmem and mark

them as reserved.
3. When someone calls freemem, we return the chunks to the set of free chunks.
4. How do we keep track of all of the available chunks vs reserved chunks?

a. Use something called a "free list", which is a linked list of nodes that store information about
available chunks.

b. Shared by both getmem and freemem.
c. Each block on the free list starts with an uintptr_t integer that gives its size followed by a pointer to

the next block on the free list.
d. To help keep data in dynamically allocated blocks properly aligned, we require that all of the blocks

be a multiple of 16 bytes in size, and that their addresses also be a multiple of 16 (this is the same
way that the built-in malloc works).

Approach, Cont.
Getmem request? Scan the free list looking for a block of storage that is at least as large
as the amount requested, delete that block from the free list, and return a pointer to it
to the caller.

Freemem: return the given block to the free list, combining it with any adjacent free
blocks if possible to create a single, larger block instead of several smaller ones.

What is a memory frame?
typedef struct freeNode {
 uintptr_t size;

// useable memory
 struct freeNode* next;
} freeNode;

extern freeNode* freelist;

S
I
Z
E

N
E
X
T

S
I
Z
E

N
E
X
T S

I
Z
E

N
E
X
T

Addresses
What is the address?

● An integer pointing to the correct byte
(uintptr_t)

● A pointer to a memory object (void*)

What can you do with it?

● Math - add or subtract an integer to go forward or
backwards

● Cast between integer and (T*)
● If cast to (freeNode*) - access data of that type

freeNode->size, freeNode->next

S
I
Z
E

N
E
X
T

ADDRESS

getmem
freeNode* currentNode = freelist;

get_block (uintptr_t size) {
while(currentNode) {

 if(currentNode->size >= minsize)
...

 return(uintptr_t)currentNode;
}

return((void*) block+NODESIZE);
// offset for user's purposes

S
I
Z
E

N
E
X
T

ADDRESS

getmem void split_node(freeNode* n, uintptr_t size) {
freeNode* newNode =

(freeNode*)((uintptr_t)(n) + size+NODESIZE);

 newNode->size = n->size - size - NODESIZE;
 newNode->next = n->next;

 n->size = size;
 n->next = newNode;

 ….

S
I
Z
E

N
E
X
T

S
I
Z
E

N
E
X
T

Approach: getting memory blocks
If, a large enough block exists, ʻgetmemʼ splits the block into an appropriate sized chunk
and pointer to the block

Else, getmem needs to

Get a good-sized block of storage from the underlying system.

Add it to the free list

Split it up, yielding a block that will satisfy the request (ʻifʼ condition)

Note, Initial call to getmem finds it with no memory, and results in ʻelseʼ condition.

Approach: returning memory
● Freemem gets a pointer to a block of storage and adds it to the free list, combining

it with adjacent blocks on the list.
● Freemem isn't told is how big the block is and must find the size of the block.
● The usual way this is done is to have getmem actually allocate a block of memory

that is a bit larger than the user's request, store the free list node or just the size of
the block at the beginning of that block.

● The returned pointer is actually points a few bytes beyond the real start of the
block.

● When freemem is called, it can take the pointer it is given, subtract the appropriate
number of bytes to get the real start address of the block, and find the size of the
block there.

Approach: returning memory
● Freemem gets a pointer to a block of storage and adds it to the free list, combining

it with adjacent blocks on the list.
● Freemem isn't told is how big the block is and must find the size of the block.
● The usual way this is done is to have getmem actually allocate a block of memory

that is a bit larger than the user's request, store the free list node or just the size of
the block at the beginning of that block.

● The returned pointer is actually points a few bytes beyond the real start of the
block.

● When freemem is called, it can take the pointer it is given, subtract the appropriate
number of bytes to get the real start address of the block, and find the size of the
block there. p-sizeof(freelist_node)->size

Memory block
Freelist
node

Use ‘assert’ in C: void check_heap ();
Check for possible problems with the free list data structure.
This function should use asserts to verify that:

● Blocks are ordered with increasing memory addresses
● Block sizes are positive numbers and no smaller than

whatever minimum size you are using
● Blocks do not overlap (the start + length of a block is not

an address in the middle of a later block on the list)
● Blocks are not touching (the start + length of a block

should not be the address of the next block on the list)

If no errors are detected, this function should return silently
after performing these tests. If an error is detected, then an
assert should fail and cause the program to terminate at
that point.

void check_heap() {

 if (!freelist) return;
 freeNode* currNode = freelist;
 uintptr_t mins= \
currNode->size;

 < …….>
 assert (mins >= MINSIZE);
}

HW6 : using ‘extern’ (a shared global variable)
● Where does the free list head pointer live?

○ Needs to be accessible in both getmem and freemem implementation .c
files. (Would normally be in the same module, but divided here for team
work.)

● Could put it in a shared header file?
○ But, int x; allocates space for ʻxʼ which is bad in a header file.

● Can we DECLARE ʻx ,̓ but not DEFINE it?
○ Yes!: extern int x;

● Then in a .c file, you can actually define it (only in one file!).

HW6: Bench
Exercises your code: can use it as a test as you build up the other functions

Next up: C++ (Want to read ahead?)
Best place to start: C++ Primer, Lippman, Lajoie, Moo, 5th ed., Addison-Wesley,
2013

Every serious C++ programmer should also read: Effective C++, Meyers, 3rd ed.,
Addison-Wesley, 2005

Best practices for standard C++

Effective Modern C++, Meyers, OʼReilly, 2014
Additional “best practices” for C++11/C++14

Good online source: cplusplus.com

What is C++ ?
A big language - much bigger than C

Conveniences in addition to C (new/delete, function overloading,
bigger std library)

Namespaces - similar to Java

Extras (casts, exceptions, templates, lambda functions)

Object Oriented - has classes and objects similar to Java

Why C++ ?
● C++ is C-like in

○ User-managed memory
○ Header files
○ Still use pointers

● C++ is Java like in
○ Object Oriented
○ Modern additions to language

● Knowing C++ may help understand both C & Java better

