
CSE 374: Lecture 19
Software Specification, HW6

Stubbing
Unit testing looks at one component at a
time

Provide ʻstubsʼ to give just enough code
for executing the desired unit.

After unit testing succeeds, proceed with
integration testing (combining units) and
system testing (the entire product).

Testing frameworks exist to make this
easier: explore and use them!

● Instead of computing a function,
use a small table of pre-encoded
answers

● Return default answers that
wonʼt mess up what youʼre
testing

● Donʼt do things (e.g., print) that
wonʼt be missed

● Use an easier/ slower algorithm
● Use an implementation of fixed

size (an array instead of a list?)
● Test with hard coded input.

Eat your vegetables
● Make tests

○ Early
○ easy to run (e.g., a make target with an automatic diff against sample output)
○ that test interesting and well-understood properties
○ that are as well-written and documented as other code

● Write the tests first! (seems odd until you do it)
● Write much more code than the “assignment requires you turn-in”
● Manually or automatically compute test-inputs and right answers?
● Write regression tests and run on each version to ensure bugs do not

creep in for stuff that “used to work”.

Homework 5
Idea:

Write source code for a tree

Write tests to make sure the tree does what you want

ONLY THEN

Write source code to use the tree as a trie.

What tests can you write?
● Do letters become the correct number?
● Is memory allocated & deallocated

correctly?
○ Hint: valgrind

Testing to Debug
❖ Have bug? Find the cause and fix it
❖ A bit of an art, but, Treat debugging as a scientific experiment:

"Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly
as possible, you are, by definition, not smart enough to debug it."
Brian Kernighan -- Wrote THE BOOK on C (our book!)

Hypothesis: the problem is because …

Experiment: design tests to verify hypothesis

Not verified? Start over with a new hypothesis

Verified? Bug found! Fix it & test it
Add the test to your collection

Why Specs?

What is testing?

"Test your software or your users will."
Hunt & Thomas -- The Pragmatic Programmer

Software testing evaluates
the effectiveness of a
software solution

★ Systematic
★ Objective

Effectiveness:

Does what it is supposed to do

Fails gracefully

Uses memory safely and
efficiently

Computes in reasonable time

https://en.wikipedia.org/wiki/Software_testing

But how do we
know what it is
supposed to do?

https://en.wikipedia.org/wiki/Software_testing

Full Specification
● Tractable for very simple stuff:

○ “Given integers x,y>0, return the greatest common divisor.”
● What about sorting a doubly-linked list?

○ Precondition: Can input be NULL? Can any prev and next fields be
NULL? Can the list be circular or not?

○ Postcondition: Sorted (how to specify?, on what condition?)
● Beyond “pre” and “post” – time/space overhead, other effects (such as

printing), things that happen in parallel
● Specs guide programming and testing!
● Declarative (“what” not “how”)

○ decouples implementation and use.

Basics: Pre and Post Conditions

● Pre- and post-conditions apply to any statement, not just functions
○ What is promised before and guaranteed after

● Because a loop “calls itself” its body’s post-condition better imply
the loop’s precondition
○ A loop invariant

● CORRECT: a segment of code is correct if, when it begins
execution in a state where its precondition is true, it is guaranteed
to terminate in a state in which the postcondition is true

● Example: find max (next slide)

Find Max / Loop-invariant
// pre: arr has length
// len; len >= 1
int max = arr[0];
int i=1;
while(i<len) {
 if(arr[i] > max)
 max = arr[i];
 ++i;
}
// post: max >= all arr
// elements

loop-invariant: For all j < i,
max >= arr[j].

to show it holds after the loop
body, must assume it holds
before loop body

loop-invariant plus !(i<len)
after body, enough to show post

Partial Specification
It may not be possible to completely specify an algorithm (or
expedient)

Partial Specs:
➔ What is each argument precisely? Can arguments be null?
➔ Are pointers to stack data allowed? (what if stack is popped?)
➔ Are cycles in data structures allowed?
➔ Are there min and max sizes of data?

Checking specifications as part of code

● Specs are useful for more than writing code and testing
● Check them dynamically, e.g., with assertions

○ Easy: argument not NULL
○ Harder but doable: list not cyclic
○ Impossible: Does the caller have other pointers to this

object?

Use ‘assert’ in C

Unit Testing
Test small components of code
individually

Basic approach - ʻassertʼ desired
performance.

(Note: Use conditional compilation
Ifdef NDEBUG
Plus macro
#define assert(ignore)((void) 0)
To compile without test code.)

#include <assert.h>
#include <stdlib.h>
#include "f.h"

// Assert statements will fail with a message
// if not true.
int main(int argc, char** argv) {

 assert(!f(0, 0)); // Test 1: f(0,0) => 0
 assert(f(0, 1)); // Test 2: f(0,1) => T
 assert(f(1, 0)); // Test 3: f(1,0) => T
 assert(f(1,1)); // Test 4: f(1,1) => T

 // Test case 5: f(-1,1) => not-0
 assert(f(-1,1));
 return EXIT_SUCCESS;
}

OUTPUT >> program: f.c:9: main: Assertion
`!f(0,0)' failed. Abort (core dumped)

Remember this?

Assert Style
● Often guidelines are simple and say “always” check everything, but:

○ Often not on “private” functions (caller already checked)
○ Unnecessary if checked statically

● Usually “Disabled” in released code because:
○ executing them takes time
○ failures are not fixable by users anyway
○ assertions themselves could have bugs/vulnerabilities

● Others say:
○ Should leave enabled; corrupting data on real runs is worse than

when debugging

Exceptions
● Assert is used to verify internal expectations in code controlled by user

○ If asserts are violated code can be modified
● Exceptions are used to check expectations of code outside your control

○ Such as the return of a library function
○ Should usually exit (EXIT_FAILURE)

● Language dependent - Java offers asserts on top of its exception handling,
C does not offer exception handling.
○ User is expected to anticipate trouble and catch it
○ Returning success/failure codes can be very helpful

● Other Language dependent tools exist
○ Example: strong type checking prevents some sorts of specification violations

API: Application Programming Interface
● Defines input and output for

ʻapplicationsʼ
○ Can be entire apps, or

subfunctions, or classes
○ Library APIs describe available

functions in library
● Useful for writing & testing

○ API dictates function prototype
○ (Black box?) Tests that show API

adherence

Javadocs: Great example of an API
standard

@param
@returns
@throws
@see
@author

Scientific Computing
Notes: worth specifying units in the function description and perhaps argument names.

