
CSE 374: Lecture 18
Testing

HW4 Graded
This week:

HW Git
HW 5

Finish Test 3

Tips for Asking Questions:

1. Questions are GOOD; ask them
2. Have you watched the lecture?
3. Have you reread the assignment?
4. Have you looked it up?

5. When asking on Ed
a. Search for a previous answer to Q
b. Put it in the right category
c. Make it public if possible so others

can learn

6. Include details about how and
when something happens

Saturday

What we Make
Compiler actually runs in stages:

a. Preprocessor
b. Compiler
c. Assembler
d. Linker

There are other tools to manage this:

● IDEs
● Projects
● Ant

Talk Demo

talk

main.ospeak.oshout.o

main.c

speak.h

speak.cshout.c

shout.h

Writing Good Code
1. Choose the right language. If possible, choose languages that prevent certain types

of bugs. For example, if you don't need the lower-level performance or control, pick a
language like Java rather than C to avoid memory-related bugs.

2. Think before you code. Understand how the program will work before implementing it.
Draw data structures and how you will modify them over the course of the program.
Write pseudocode and consider all of the different cases you might encounter.

3. Make defects visible. Use "assert" statements and exceptions (if they exist in your
language) to catch errors safely.

4. Test the code. Ensure proper behavior by writing another program to exercise the code
completely.

5. Debugging. Unavoidable. Examples of debugging include adding print statements,
gdb, valgrind or other tools, or adding more test cases.

"There are two ways of constructing a software design:
● One way is to make it so simple that there are

obviously no deficiencies, and
● the other way is to make it so complicated that there

are no obvious deficiencies.

The first method is far more difficult."
Sir C. A. R. Hoare
1980 Turing Award winner
Invented "quicksort"

What is testing?

"Test your software or your users will."
Hunt & Thomas -- The Pragmatic Programmer

Software testing evaluates
the effectiveness of a
software solution

★ Systematic
★ Objective

Effectiveness:

Does what it is supposed to do

Fails gracefully

Uses memory safely and
efficiently

Computes in reasonable time

https://en.wikipedia.org/wiki/Software_testing

https://en.wikipedia.org/wiki/Software_testing

Testing Challenges
● Testing is very limited and difficult

○ Small number of inputs
○ Small number of calling contexts, environments, compilers, …
○ Small amount of observable output
○ Requires more work to implement test code
○ It is hard to imagine all the possible flaws in your own code

● Standard coverage metrics (statement, branch, path) are useful but only
emphasize how limited it is.

"Program testing can be a very effective way to show the presence of bugs, but is hopelessly inadequate for
showing their absence."
Edsger Dijkstra -- 1972 Turing Award lecture

Testing Responsibility

~ Every person writing software should
be capable and responsible for testing it.

(It’s a highly challenging job: Some specialize in it.)

How much testing?
❖ Often use ʻcoverage metricsʼ:

➢ Percentage of code that is covered by testing mechanisms.
❖ Nice for goal setting
❖ Not sufficient for guaranteeing problem free code.

Coverage
int f(int a, int b)
{
 int ans = 0;
 if(a)
 ans += a;
 if(b)
 ans += b;
 return ans;
}

Statement coverage: f(1,1) sufficient

Branch coverage: f(1,1) and f(0,0)
sufficient

Path coverage: f(0,0), f(1,0),
f(0,1), f(1,1) sufficient

But even the example path-coverage test
suite suggests f is a correct “or” function for
C; it is not. f(-1,1)

F => a OR b where only ʻ0ʼ is false.

Types of Testing
● Unit testing looks for errors in subsystems (functions, file, class) in isolation.

○ Small number of things to test.
○ Easier to find faults when errors occur
○ Can test many components in parallel

● Integration testing tests the interactions between subsystems of code. Can catch errors that unit tests will
not surface, since while each subsystem may be correct separately, they may not work together properly.

● Continuous integration testing is automatically running integration tests and unit tests on every commit.
● Performance testing measures performance: how much memory it takes, how fast it is, and how much

CPU it uses. Performance tests can reveal errors in how the program's resources are managed -
bottlenecks in the system.

● Reliability testing looks at performance when a system is put under heavy and consistent use.
● Security testing is looking for vulnerabilities that could be abused.
● Usability testing is high level testing to look at whether software responds to typical user interactions

correctly.

Black-Box v. White-Box testing
Black box testing allows the tester to
specify input, and see output, with no
vision into the actual code.

Depends only on specification of
code function

Wonʼt get stuck implementing only
the logic in the code

White box testing is written with a full view
of the code, tester specifies test cases to
exercise known cases in the code.

Write tests for all the weird corner
cases in code.

Check the edge cases - loop boundaries, empty or full data structures, max-values
Check for response to different types of input, and unexpected input

Unit Testing
Test small components of code
individually

Basic approach - ʻassertʼ desired
performance.

(Note: Use conditional compilation
Ifdef NODEBUG
Plus macro
#define assert(ignore)((void) 0)
To compile without test code.)

#include <assert.h>
#include <stdlib.h>
#include "f.h"

// Assert statements will fail with a message
// if not true.
int main(int argc, char** argv) {

 assert(!f(0, 0)); // Test 1: f(0,0) => 0
 assert(f(0, 1)); // Test 2: f(0,1) => T
 assert(f(1, 0)); // Test 3: f(1,0) => T
 assert(f(1,1)); // Test 4: f(1,1) => T

 // Test case 5: f(-1,1) => not-0
 assert(f(-1,1));
 return EXIT_SUCCESS;
}

OUTPUT >> program: f.c:9: main: Assertion
`!f(0,0)' failed. Abort (core dumped)

Conditional Compilation

#ifdef FOO
// only compiled if FOO is defined
#endif

#ifndef FOO
// only compiled if NOT FOO
#endif

#if FOO > 2
// only compiled if FOO > 2
#endif

// use DBG_PRINT for debug-printing
#ifdef DEBUG
#define DBG_PRINT(x) printf("%s",x)
#else
// replace with nothing
#define DBG_PRINT(x)
#endif

DBG_PRINT("hello world!\n");

$ gcc -D DEBUG foo.c
// or with #define

Stubbing
Unit testing looks at one component at a
time

Provide ʻstubsʼ to give just enough code
for executing the desired unit.

After unit testing succeeds, proceed with
integration testing (combining units) and
system testing (the entire product).

Testing frameworks exist to make this
easier: explore and use them!

● Instead of computing a function,
use a small table of pre-encoded
answers

● Return default answers that
wonʼt mess up what youʼre
testing

● Donʼt do things (e.g., print) that
wonʼt be missed

● Use an easier/ slower algorithm
● Use an implementation of fixed

size (an array instead of a list?)
● Test with hard coded input.

Eat your vegetables
● Make tests

○ Early
○ easy to run (e.g., a make target with an automatic diff against sample output)
○ that test interesting and well-understood properties
○ that are as well-written and documented as other code

● Write the tests first! (seems odd until you do it)
● Write much more code than the “assignment requires you turn-in”
● Manually or automatically compute test-inputs and right answers?
● Write regression tests and run on each version to ensure bugs do not

creep in for stuff that “used to work”.

Homework 5
Idea:

Write source code for a tree

Write tests to make sure the tree does what you want

ONLY THEN

Write source code to use the tree as a trie.

What tests can you write?
● Do letters become the correct number?
● Is memory allocated & deallocated

correctly?
○ Hint: valgrind

Testing to Debug
❖ Have bug? Find the cause and fix it
❖ A bit of an art, but, Treat debugging as a scientific experiment:

"Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly
as possible, you are, by definition, not smart enough to debug it."
Brian Kernighan -- Wrote THE BOOK on C (our book!)

Hypothesis: the problem is because …

Experiment: design tests to verify hypothesis

Not verified? Start over with a new hypothesis

Verified? Bug found! Fix it & test it
Add the test to your collection

HW6: Bench
Exercises your code: can use it as a test as you build up the other functions

