CSE 374 Lecture 15

Version control and Git

® H\W3 revisions due Friday.

e HWA4 due this Friday
o Revision of resubmission rules - we will manually grade once
after initial due date, and once after late due date, but you may
submit as many times as you want for autograding
o Still, DO NOT USE THE AUTOGRADER AS YOUR DEBUGGER
e Ask questions on Ed
o Put in the category for the assignment
o Include information about when and how the problem occurs

s | vess | weses | twws | ey

10:30-11:20 Lecture 07 | 14:30-15:30 OH Mohit 08 | 9:00-10:00 Dr. Hazen, CSE1 212 09 [11:00-12:00 OH Yitian 10 | 10:30-11:20 Lecture

CSE2GO01 Zoom Zoom CSE2GO01

10:30-11:20 Lect
Version Control s Make and Build Dependencies

15:30-16:30 OH Diana CSE2 GO1 13:30-14:30 OH Maxim
Zoom More pre-processor, multiple files Zoom / CSE1 3rd Floor Breakout 16:00-17:00 OH Yitian

12:30-13:30 OH Mohit 23:00 HW4 due HW4 Spec
Zoom [CS2152

13:30-14:30 OH Dixon
Zoom / CSE1 4th Floor Breakout

What is version
control?

Subversion, perforce, mercurial,
cvs, sourcesafe, git

Software system that
keeps records of files,
changes-to-files, and

manages sharing them
between collaborators.

Why is version control?

1. Backups. Archives a project to keep a safe copy.

2. Collaboration. Keeps a shared copy of project that all
collaborators can access and update. Manages
concurrent and maybe conflicting changes.

3. Version log. Keeps copies of previous versions so
collaborators can revert if necessary.

Notes: Not language or coding specific; version control is used for all types of documents.

Alternate Models

Alice GitLab

S @/ g\@

Alice Carol
Carol Bob

Distributed System Centralized System

General Repository Model

e Aprojectlivesin a collection called a
"repository" (essentially a folder).

e Each user has their own copy of the
repository (in the following diagram
notated with "R").

e Auser"commits" changes to their
copy of the repository to save them.

e Otheruserscan "pull" changes from
that repository into their own local
repository.

Decentralized: Data is stored in
local repositories.

Users can fork from other user’s
repositories.

Does not scale well to large
numbers of users.

Git Centralized Rep05|tory

TN
2

)

GitLab

Alice

)
I

2]

Bob

Carol

Users have a shared repository (“origin” or “remote”)
which lives on a central server.

Each user "clones" the repository to create a "local"
copy.

A user "commits" changes to their copy to save them.
To share changes, a user "pushes' their local changes to
the origin.

All users "pull" from the central server periodically to get
changes (instead of from each other).

We call the central repository the "remote" repository;
access to the remote repository requires authorization.
Once code is pushed to the central server, the history of
commits is linear. Commits may be reverted.

What is Git?

THISIS GIT. IT TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

l COOL. HOU DO WEVSE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM TO SYNC LR
IF YOU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE. PROJECT,
AND DOWNLOAD A FRESH COPY.

as...”; and eventually you’ll learn the
commands that will fix everything.

If that doesn’t fix it, git.txt contains the phone
number of a friend of mine who understands
git. Just wait through a few minutes of “It’s

really pretty simple, just think of branches ?

What do we do with Git?

Learn the common cases; look up the uncommon ones.

e Create
o a new repository/project (rare — once or twice a year)
o anew branch (days to weeks; not in cse374, but used in production shops for independent
development)
o anew commit (daily or more, each significant change)
e Pushtorepo
o regularly, when you want to back-up or share work — even with yourself on a different
computer
e Pullarepo
o Regularly, to keep up to date with what other people are doing

e Other operations as needed (check version history, differences, ...)

IN CASE OF FIRE ¥

0= git commit

ET:\ git push

-}:1‘ ex1t building

IN CASE OF FIRE ¥

0= git commit

ET:\ git push

-}:1‘ ex1t building

glit pull

Repository Access

A repository can be:

e Local: run git commands in repo directory or subdirectory
e Remote: lots of remote protocols supported (ssh, https) depending on
repository configuration
o Specify user-id and machine
o Usually need git and ssh installed locally
o Need authentication (use ssh key with GitLab)
e cse374 use ssh access to remote GitLab server
e Feel free to experiment with GitLab

Getting Started

e Create local ssh keys (ssh-keygen) and add to your GitLab account (instructions
on gitlab, linked from cse374 git tutorial; only need to do this once)
e Set up arepository (we have a few to start with; if you do it yourself you get to pick
name, location)
e + New Project (on gitlab dashboard)
e Clone a working copy of the repo to your machine
o cd where-you-want-to-put-it
o it clone git@gitlab.cs.washington.edu:path/to/repo
o url for above comes from gitlab page for your project, find using link in email
you get when project created or on by logging in to gitlab
e If git asks for password, keys aren’t set up right — fix it

mailto:git@gitlab.cs.washington.edu

f Inbox (3) - X & Files-main X 4» Megan Haz. X ed CSE374-2

¢« > C

@ gitlab.cs.washington.edu/mh75

= Menu

User Settings

@ Profile
8% Account
oo
-1

s Applications

Chat

Access Tokens

Emails

Megan Hazen
@mh75

Password
Notifications

SSH Keys
— Set status

Y v PP @ OO

GPG Keys

i)

i i Pref
Edlt pl‘OfIIe references
B3 Active Sessions

Preferences Authentication log

Sign out

X

Grading Da: X

User Settings > SSH Keys

v Search GitLab

‘ Q Search settings

SSH Keys

SSH keys allow you to establish a secure

connection between your computer and GitLab.

Add an SSH key

To add an SSH key you need to generate one or use an existing key.

Key

Paste your public SSH key, which is usually contained in the file '~/.ssh;
'~/.ssh/id_rsa.pub’ and begins with 'ssh-ed25519" or 'ssh-rsa'. Do not p
that can compromise your identity.

Typically starts with “ssh-ed25519 ..." or "ssh-rsa .."

Title Expires at
e.g. My MacBook key mm/dd/yyyy
Civn vnnr individioal Lac a #i#Hla Thic wiill kha 07 S || §

|

mh75@localhost:~/cse374-22wi

File Edit View Search Terminal Help

[mh75@localhost ~]$ git clone git@gitlab.cs.washington.edu:mh75/cse374-22wi.git
BiCloning into 'cse374-22wi'...
Miremote: Enumerating objects: 7, done.

remote: Counting objects: 100% (7/7), done.
CSE374-22WI & remote: Compressing objects: 100% (5/5), done.

C remote: Total 7 (delta 2), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (7/7), done.
; ' Resolving deltas: 100% (2/2), done.
o h
3 Commits ¥ 1Branch ¢ 0Tags [113KBFiles E 113 {ah75@lacalhostl-]&lait pull

fatal: not a git repository (or any parent up to mount point /)

Project ID: 73031 K

Shared project for the 22 WI quarter

©) Auto DevOps
= It will automatically build, test, and deploy your application based on a predefined CI/CD configuration.

o Learn more in the Auto DevOps documentation

Enable in settings

main cse374-22wi / | + v History Find file Web IDE & v

Clone with SSH

Merge branch 'mh75-main-patch-35196" into 'main’ (ees)))
s git@gitlab.cs.washington.edu:mh7s/ | [f

Megan Hazen authored 18 hours ago
Clone with HTTPS

[README | | B Add LICENSE | | B Add CHANGELOG | | B Add CONTRIE https://gitlab.cs.washington.edu/m [

Set up CI/CD 3 {} Configure Integrations | .
E Open in your IDE

Name Iast commit Visual Studio Code (SSH)

Local Additions & Editing

*Edit a file “stuff.c”
*Add file(s) to list to be saved in repo on next commit
git add stuff.c
«Commit all added changes
git commit -m “reason/summary for commit”

*Repeat locally until you want to push accumulated commits
to GitLab server to share with partner or for backup...

Git commit -m ‘'messages should be useful’

COMMENT DATE.
CREATED MAIN LOOP & TIMING CONTROL
ENABLED CONFIG FILE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDITS
MORE. CODE.

HERE HAVE CODE.

ARAAAAAA
ADKFJISLKDFISDKLFT

MY HANDS ARE TYPING LJORDS
HARARARAAANDS

AS A PROJECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

File mv or rename

e Once files have been committed to gitlab repository:
git mv files
git rm files

o git will make changes locally then update the remote
GitLab repo when you push

~ If you use regular shell mv/rm commands, git will give you all sorts of
interesting messages when you run git status and you will have to clean up

Gitlab remote use: sharing changes

e (Good practice — update with remote changes:
git pull
o Also do this any time you want to merge changes pushed by your

partner

e Test, make any needed changes, do git add / git commit to get everything
cleaned up locally

e \When ready, push accumulated changes to server
glt push

e |f push blocks because there are newer changes on server, do a git pull,
accept any merge messages, cleanup, add/commit/push again

Remote

Resolving Conflicts

git will tell you which files had merge conflicts
(use git status to see conflicts), and the
files will be edited to identify the conflict:

<<<LLL<L<L HEAD
for (int 1i=0; 1i<10; i++)

for (int i=0; i<=10; i++)
>>>>>>>> master

You must modify the section to contain the code

you want, then save, add, and commit the
merge.

When more than one person works on a file
you may get ‘merge conflicts’.

A merge conflict occurs when a person ‘git
pull’s a file that has been updated on the
remote repository since they started editing.

If git detects a merge issue (the same line of
code edited in two non-sequential commits,
i.e. commits made at the same time), it will

attempt to automatically resolve the merge.

But if the commits modified the same
portion of a file you will have to fix the
conflict manually.

Example Commands

*Update local copy to remote
glt pull

*Make changes
git add file.c
git mv oldfile.c newfile.c

git rm obsolete.c

Commit changes to local repo

git commit —-m “fixed segfaut in getmem”

Examine changes

git status (see
uncommitted changed files, or how
to revert changes, etc.)

git diff file (see
uncommitted changes in file)

git log (see history of
commits)
Update GitLab shared repo to
reflect local changes

gilt push

Fixing Mistakes

Set local repository to the
last commit (forget all
changes that you've
made), youcanrungit
reset —--hard HEAD
Here "HEAD" refers to the
most recent commit.

If one of your past commits was BAD, you can undo
it using

git revert

If the second-to-last commit was bad, you can undo
it by saying

git revert HEAD~1

a. HEAD is the most recent commit and "1" signifies the

one before it. This will create a NEW commit that is
the opposite of the original commit.

Commits aren't completely static and permanent. If
you make a commit but then realize you forgot one
little thing, you can "amend"/modify your previous
commit

git commit --amend

.gitignore

Git may be used to store any types of files.
HOWEVER

Do not store files that are unnecessary.

=> Backup files (like *~ emacs backups)
-> Files that can be recreated (such as .o

files) should not be added.
=> System specific files

‘.gitignore’ lists files not to upload to HEAD

emacs backup files
*

OS X finder info files
.DS_Store

built object files
* .0

374: Gitlab

Resources on line -

https://qitlab.cs.washington.edu/help

https://courses.cs.washington.edu/co
urses/cse374/22wi/resources/qit.html

https://qgit-scm.com/book/en/v2

https://about.qitlab.com/images/press

/qit-cheat-sheet.pdf

You may choose to work with a partner for
HW6, in which case, you must use a CSE
GitLab repository to store all of the code and
other files associated with the project.

Don't store things like .o files and executable
programs that don't belong in a repository.

You must use the provided repository even if
you have separate machines or accounts of
your own that you use for other projects.

Both partners should be regularly committing
and pushing changes to your repository. The
git log to reflect reasonable activity by both
members of the group.

https://gitlab.cs.washington.edu/help
https://courses.cs.washington.edu/courses/cse374/20sp/resources/git.html
https://courses.cs.washington.edu/courses/cse374/20sp/resources/git.html
https://git-scm.com/book/en/v2
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf

