
CSE 374 Lecture 15
Version control and Git

● HW3 revisions due Friday.
● HW4 due this Friday

○ Revision of resubmission rules - we will manually grade once
after initial due date, and once after late due date, but you may
submit as many times as you want for autograding

○ Still, DO NOT USE THE AUTOGRADER AS YOUR DEBUGGER
● Ask questions on Ed

○ Put in the category for the assignment
○ Include information about when and how the problem occurs

What is version
control?

Software system that
keeps records of files,
changes-to-files, and
manages sharing them
between collaborators.

Subversion, perforce, mercurial,
cvs, sourcesafe, git

Why is version control?

1. Backups. Archives a project to keep a safe copy.
2. Collaboration. Keeps a shared copy of project that all

collaborators can access and update. Manages
concurrent and maybe conflicting changes.

3. Version log. Keeps copies of previous versions so
collaborators can revert if necessary.
Notes: Not language or coding specific; version control is used for all types of documents.

Alternate Models

Distributed System Centralized System

General Repository Model

● A project lives in a collection called a
"repository" (essentially a folder).

● Each user has their own copy of the
repository (in the following diagram
notated with "R").

● A user "commits" changes to their
copy of the repository to save them.

● Other users can "pull" changes from
that repository into their own local
repository.

Decentralized: Data is stored in
local repositories.

Users can fork from other userʼs
repositories.

Does not scale well to large
numbers of users.

Git Centralized Repository
● Users have a shared repository (“origin” or “remote”)

which lives on a central server.
● Each user "clones" the repository to create a "local"

copy.
● A user "commits" changes to their copy to save them.
● To share changes, a user "pushes" their local changes to

the origin.
● All users "pull" from the central server periodically to get

changes (instead of from each other).
● We call the central repository the "remote" repository;

access to the remote repository requires authorization.
● Once code is pushed to the central server, the history of

commits is linear. Commits may be reverted.

What is Git?

What do we do with Git?
Learn the common cases; look up the uncommon ones.

● Create
○ a new repository/project (rare – once or twice a year)
○ a new branch (days to weeks; not in cse374, but used in production shops for independent

development)
○ a new commit (daily or more, each significant change)

● Push to repo
○ regularly, when you want to back-up or share work – even with yourself on a different

computer

● Pull a repo
○ Regularly, to keep up to date with what other people are doing

● Other operations as needed (check version history, differences, …)

git pull

Repository Access

A repository can be:

● Local: run git commands in repo directory or subdirectory
● Remote: lots of remote protocols supported (ssh, https) depending on

repository configuration
○ Specify user-id and machine
○ Usually need git and ssh installed locally
○ Need authentication (use ssh key with GitLab)

● cse374 use ssh access to remote GitLab server
● Feel free to experiment with GitLab

Getting Started
● Create local ssh keys (ssh-keygen) and add to your GitLab account (instructions

on gitlab, linked from cse374 git tutorial; only need to do this once)
● Set up a repository (we have a few to start with; if you do it yourself you get to pick

name, location)
● + New Project (on gitlab dashboard)
● Clone a working copy of the repo to your machine

○ cd where-you-want-to-put-it
○ git clone git@gitlab.cs.washington.edu:path/to/repo
○ url for above comes from gitlab page for your project, find using link in email

you get when project created or on by logging in to gitlab
● If git asks for password, keys aren’t set up right – fix it

mailto:git@gitlab.cs.washington.edu

Local Additions & Editing

•Edit a file “stuff.c”
•Add file(s) to list to be saved in repo on next commit
 git add stuff.c

•Commit all added changes
 git commit –m “reason/summary for commit”
•Repeat locally until you want to push accumulated commits
to GitLab server to share with partner or for backup…

Git commit -m ‘messages should be useful’

File mv or rename

● Once files have been committed to gitlab repository:
git mv files

git rm files

○ git will make changes locally then update the remote
GitLab repo when you push

 ~ If you use regular shell mv/rm commands, git will give you all sorts of
interesting messages when you run git status and you will have to clean up

Gitlab remote use: sharing changes
● Good practice – update with remote changes:

git pull
○ Also do this any time you want to merge changes pushed by your

partner
● Test, make any needed changes, do git add / git commit to get everything

cleaned up locally
● When ready, push accumulated changes to server

git push
● If push blocks because there are newer changes on server, do a git pull,

accept any merge messages, cleanup, add/commit/push again

Resolving Conflicts
git will tell you which files had merge conflicts
(use git status to see conflicts), and the
files will be edited to identify the conflict:

 <<<<<<<< HEAD
 for (int i=0; i<10; i++)
 ===============
 for (int i=0; i<=10; i++)
 >>>>>>>> master

You must modify the section to contain the code
you want, then save, add, and commit the
merge.

When more than one person works on a file
you may get ʻmerge conflicts .̓

A merge conflict occurs when a person ʻgit
pullʼs a file that has been updated on the
remote repository since they started editing.

If git detects a merge issue (the same line of
code edited in two non-sequential commits,
i.e. commits made at the same time), it will
attempt to automatically resolve the merge.

But if the commits modified the same
portion of a file you will have to fix the
conflict manually.

Example Commands
•Update local copy to remote
 git pull
•Make changes
 git add file.c
 git mv oldfile.c newfile.c
 git rm obsolete.c

•Commit changes to local repo
 git commit –m “fixed segfaut in getmem”

Examine changes
 git status (see
uncommitted changed files, or how
to revert changes, etc.)

 git diff file (see
uncommitted changes in file)

 git log (see history of
commits)

•Update GitLab shared repo to
reflect local changes
 git push

Fixing Mistakes

● Set local repository to the
last commit (forget all
changes that you've
made), you can run git
reset --hard HEAD

● Here "HEAD" refers to the
most recent commit.

● If one of your past commits was BAD, you can undo
it using
git revert

● If the second-to-last commit was bad, you can undo
it by saying
git revert HEAD~1
a. HEAD is the most recent commit and "1" signifies the

one before it. This will create a NEW commit that is
the opposite of the original commit.

● Commits aren't completely static and permanent. If
you make a commit but then realize you forgot one
little thing, you can "amend"/modify your previous
commit
git commit --amend

.gitignore
Git may be used to store any types of files.

HOWEVER

Do not store files that are unnecessary.

➔ Backup files (like *~ emacs backups)
➔ Files that can be recreated (such as .o

files) should not be added.
➔ System specific files

.̒gitignoreʼ lists files not to upload to HEAD

emacs backup files
*~

OS X finder info files
.DS_Store

built object files
*.o

374: Gitlab
Resources on line -

https://gitlab.cs.washington.edu/help

https://courses.cs.washington.edu/co
urses/cse374/22wi/resources/git.html

https://git-scm.com/book/en/v2

https://about.gitlab.com/images/press
/git-cheat-sheet.pdf

You may choose to work with a partner for
HW6, in which case, you must use a CSE
GitLab repository to store all of the code and
other files associated with the project.

Don't store things like .o files and executable
programs that don't belong in a repository.

You must use the provided repository even if
you have separate machines or accounts of
your own that you use for other projects.

Both partners should be regularly committing
and pushing changes to your repository. The
git log to reflect reasonable activity by both
members of the group.

https://gitlab.cs.washington.edu/help
https://courses.cs.washington.edu/courses/cse374/20sp/resources/git.html
https://courses.cs.washington.edu/courses/cse374/20sp/resources/git.html
https://git-scm.com/book/en/v2
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf

