CSE 374 Lecture 13

Typedefs, structs, data structures

10:30-11:20 Lecture & M Test 2: Scripting and Tools 02 | 11:00-12:00 OH Yitian 03 [10:30-11:20 Lecture
CSE26G01 Zoom CSE2G01

10:30-11:20 Lecty
C: Debugging LA C:Trees

15:30-16:30 OH Diana CSE2GO1 13:30-14:30 OH Maxim
Zoom C: datatypes, structs, linked lists Zoom / CSE1 3rd Floor Breakout

Slides, factorial.c, f Slides

reverse.c{Fixed), arrdynamicwror linkedlist.c
mysterynum.c linkedlist.c, linkedlist.h, linkedlistclient.c
debugging demo

— 13:00-14:00 OH Mohit

’ CsE2
16:00-17:00 OH Yitian
13:30-14:30 OH Dixon
Zoom / CSE1 4th Floor Breakout 23:00 HW3 due; HW3 Spec

February
10:30-11:20 Lecture 07 | 14:30-15:30 OH Mohit 08 | 9:00-10:00 CSE1212 09 | 11:00-12:00 OH Yitian 10 | 1030-11:20 Lecture
CSE2G01 e Zoom CSE2G01
Version Control L : = Make and Build Dependencies
CSE2601 13:30-14:30 OH Maxim

More pre-processor, multiple files Zoom / CSE1 3rd Floor Breakout 16:00-17:00 OH Yitian

12:30-13:30 OH Mohit 23:00 HW4 due HW4 Spec
Zoom

13:30-14:30 OH Dixon
Zoom / CSE1 4th Floor Breakout

30 OH Mohi

Datatypes in C

Void: a placeholder

Numbers: int, short, long, double, float, ... (signed, unsigned)

char: really a very short int (1 byte) interpreted as a printable character
Pointers (T*): int, char, double, char®, ...

Arrays (T[]): int arr[], char arr[], char* arr[], ...

o Implicit promotion to pointer when passed as an argument to a function or returned
from a function

e Booleans? Not definedinC
o 0orNULLis always considered "false" and anything else is true
e Advanced: Union T, Enum E, Function pointers

Typedef

Not really a new type - just creating an alias for an existing type

typedef <type> <name>;

In C, strings are "char™", but if | wanted to actually provide the name "string", | could!

typedef char* string;

int main(int argc, string *argv) {
string s = "hello, world!";
printf ("%$s\n", s);

Type-casting (converting one type to another)

e Syntax: (t) e where tis atype and e is an expression (sameas Java)

e Ifeisanumerictypeandtisanumerictype, thisis aconversion

To wider type, get same value

To narrower type, may not (will get mod)

From floating-point to integer, will round (may overflow)

From integer to floating-point, may round (but int to double is exact on most machines)

o O O O

main() {
int sum = 17, count = 5;
double mean;
mean = (double) sum / count;
printf ("Value of mean : %f\n", mean);

Implicit casting

e When necessary the compiler automatically converts from one type

to another (more general) type
o Promotes to integers, then to larger integers, then to floating point
o During arithmetic
o R-value converted to L-value

For details:
https://www.oreilly.com/library/view/c-in-a/0596006977/ch04.html

Pointer-casting

If « has type t1*,then (t2*) e is a (pointer) cast.

You still have the same pointer (index into the address space).

Nothing “happens” at run-time.

Just “getting around” the type system - can write any bits anywhere you want.
void evil (int **p, 1nt x) {

int *g = (int*)p;

g = x;)
void f (int **p) {

evil (p,345);

**p = 17; // writes 17 to address 345 Best case - crash

Structs

e New datatypes struct person info {
o arecord, containing one or
more fields char * name;

o Stored adjacently in memory
e Like Javaclass, except no

methods }
e Accessafield S.f

e |[fS*Psthen *Ps.f
o shortcut S->f

int age;

Struct-tags

Has type struct
person_info

‘Person_info’ is a struct
tag, not a type

Can use typedef to rename

struct person info ({
char * name;

int age;

Struct-tags

typdef struct person info person info;
Has type struct

person_info struct person_info ({

: . char * name;
‘Person_info’ is a struct ’

tag, not a type int age;

Can use typedef to rename

Struct-tags

Has type struct
person_info

‘Person_info’ is a struct
tag, not a type

Can use typedef to rename

typdef struct person info ({
char * name;
int age;

} person info;

Parameters / Arguments

Reminder: Even with a struct a copy is created

Function parameters initialized with a copy Since this won’t change the original struct, it

of corresponding argument is more common to use a pointer to the
struct

If the argument is a pointer, the parameter

value will point to the same thing, of course Avoids copying large objects

Arrays are passed as pointers (remember?) Allows manipulation of original object (can

write functions like Java methods)

But, sometimes, want to pass-by-value.
(Demo: point.c) THINK!!

Typedef struct ex.

typedef int int32; // use int32 for portability

typedef struct point { // type tag optional (sortof)
int32 x, y;

} Point2d; // Point2d is synonym for struct point

typedef Point2d * ptptr; // pointer to Point2D

Point2d p; // var declaration

ptptr ptlist; // declares pointer

