
CSE 374 Lecture 10
(Week 4: C continued)

● Homework 2 due tonight

● Only getting a 6? Check your file names
● USAGE errors - problems with how the method is called - how many

arguments, and how it exits.
● ARGUMENT errors - problems with the actual arguments passed in

○ Make sure you can handle files with weird characters in their names
● Combine

○ Concatenate files in order of input
■ Including error messages of files that don’t exist

● Spellcheck
○ Make sure grep finds only words that match the entire word and no

more

● Diana wrote up some common questions on ed:
https://edstem.org/us/courses/16520/discussion/1043172

Source File
Structures

// includes for functions & types
defined elsewhere
#include <stdio.h>
#include “localstuff.h“
// symbolic constants
#define MAGIC 42
// global variables (if any)
static int days_per_month[] = { 31,
28, 31, 30, …};
// function prototypes
// (to handle “declare before use”)
 void some_later_function(char, int);
// function definitions
void do_this() { … }
char *return_that(char s[], int n)
{ … }
int main(int argc, char ** argv) { … }

Includes declarations & prototypes you
might want to share.

Global variables & forward declarations go
first.

Stuff in function definitions is local to those
functions

I/O : Printf, scanf

➔ Printf (print-format)
➔ int printf(const char *format, ...)
➔ ʻFormatʼ is a string that can contain format tags
➔ + additional arguments to match tags
➔ Number of arguments better match number of %
➔ Corresponding arguments better have the right

types (%d, int; %f, float; %e, float (prints
scientific); %s, \0- terminated char*; … Compiler
might check, but not guaranteed

◆ best case scenario: you crash
➔ printf("%s: %d %g\n", p, y+9,

3.0)

➔ scanf (gets input, formatted)
➔ int scanf(const char *format, ...)
➔ ʻFormatʼ is a string that can contain format

tags
➔ + additional arguments to match tags -

should be pointers to the right data type so
input can be stored in them

➔ scanf(“%d %s”, &n, str);
➔ scanf("%*s %d", &a);

◆ %*s ignores string until space, then reads in
an integer

Printf and scanf are two I/O functions, prototyped in stdio.h

Demo: fopen, fgets

Formatting Tricks

From cplusplus.com

(f)scanf:

From geeksforgeeks.org

Pointer Review

varptr

var

349

Pointers point to an address in memory
&x returns the address

Declare a pointer to a pointer type and it has a
specific type/size of memory:

T *x; or T* x; or T * x; or T*x
(T is a type, x is a variable)

An expression to dereference a pointer
*x (more generally *expression)

Dereference - get the value at the address

Arrays have an implicit pointer type
T = x[n] implies x is of type T*

int var = 349;
int *varptr = &var;

Pointers to pointers
Levels of pointers make sense:
I.e.: argv, *argv, **argv
Or: argv, argv[0],
argv[0][0]
But
&(&p) doesnʼt make sense
void f(int x) {

int*p = &x;
int**q = &p;
// x, p, *p, q, *q, **q

}

Integer, pointer to integer, pointer to
pointer to integer

&p is the address of ʻp ,̓

&(&p) would be the address of the
address of p, but that value isnʼt stored
separately anywhere and doesnʼt have an
address

Try using printf (“The address
of x is %p\n”, &x);

Storage
● Variables need a place to live in memory
● Get ʻallocatedʼ a physical space in memory (with an address)
● Size of memory allocation depends on datatype
● Get ʻdeallocatedʼ to release the space in memory

Address ʻ0ʼ
Address ʻ4ʼ

Address ʻ264-1ʼ or ʻ232-1ʼ

code heap ->globals <- stack

Scope
Variables may be
accessed by the caller
only at certain times -
this is scope

Scope and storage
are related, but not
the same thing

● Global variables
○ Scope: entire program
○ Not desirable (violate encapsulation) But

can be OK for truly global data like
conversion tables, physical constants,
etc.

● Static global variables
○ Scope: containing file
○ Static functions cannot be called from

other files
● Static local variables
○ Scope: that function, rarely used
● Local variables (automatic)
○ Scope: that block – With recursion,

multiple copies of same variable (one per
stack frame/function activation)

allocated before
main, deallocated
after main -
memory in ʻglobalʼ
block

allocated “when
reached”
deallocated “after
block” - memory in
frame on stack

The stack
Stack stores active functions & local variables

Frames deleted when function returns
Local variables do not persist

Local variables must have defined size
Can not make run-time adjustments

(Arrays must have length)

<- stack

Local variable initialization
Memory allocation and initialization are not the same thing

Unlike Java, you MUST provide a value to initialize a bit of
memory

It is possible to access un-initialized bits
unlike Java with sets defaults and checks for initialization
best case scenario: you crash

Arguments

Storage allocation and variable
scope is like local variables (i.e.
space is part of the function frame
added to the stack, and the
variable may be used in the
function).

All arguments passed by value.
(i.e. a copy of the value is made
and assigned to the variable.)

Demo

Stack (main)

mainint = 3;

mainintptr =

returnint (random val)

Stack (demoint)

mainint = 3;

mainintptr =

returnint (random val)

d = 3;

Stack (dempointer)

mainint = 3;

mainintptr =

returnint (random val)

p =

Stack (morepointer)

mainint = 3;

mainintptr =

returnint (random val)

p =

d = 30

q =

Dangling
pointers

Garbage collecting languages (like Java)
only delete memory that is unreachable
to avoid this problem.

Pointers referring to
memory that has been

released (Demo)

Dangling Pointers (line 4)

x=7

?p

Dangling Pointers (line 7)

x=7

p
y=3

Dangling Pointers (line 13)

x=7

p ?

Arrays again
“A reference to an object of type
array-of-T which appears in an
expression decays (with three
exceptions) into a pointer to its first
element; the type of the resultant
pointer is pointer-to-T.”

http://c-faq.com/aryptr/aryptrequiv.ht
ml

Right: x is the array, which decays
to a pointer to an int and &x
returns a pointer to the entire
array.

void f1(int* p) { // takes a pointer
 *p = 5;
}
int* f2() {

int x[3]; // x on stack, is pointer
x[0] = 5;
(&x)[0] = 5; // address of x, points to
 // same place but different T
*x = 5; // put value at location x
*(x+0) = 5; // Also put value at x
f1(x);
f1(&x); // wrong – watch types!
x = &x[2]; // No! X isn’t really a pointer
int *p = &x[2];
return x; // correct type, but is a
 // dangling pointer

}

http://c-faq.com/aryptr/aryptrequiv.html
http://c-faq.com/aryptr/aryptrequiv.html

Pointer arithmetic
● If p has type T* or T[] and *p has type T
● If p points to one item of type T, p+1 points to a place in memory for

the next item of type T
○ So, p[0] is one item of type T, p+i = p[i]

● T[] always has type T*, even if it is declared as T[]
○ Implicit array promotion

Result: Arrays are always passed by reference, not by value. (The
information passed is the address of where the values are
stored.)

https://chortle.ccsu.edu/CPuzzles/CPuzzlesMain.html

https://chortle.ccsu.edu/CPuzzles/CPuzzlesMain.html

