CSE 374 Lecture 10

(Week 4: C continued)

Homework 2 due tonight

Only getting a 6? Check your file names
USAGE errors - problems with how the method is called - how many
arguments, and how it exits.
ARGUMENT errors - problems with the actual arguments passed in

o Make sure you can handle files with weird characters in their names
Combine

o Concatenate files in order of input

m Including error messages of files that don't exist

Spellcheck

o Make sure grep finds only words that match the entire word and no

more

Diana wrote up some common questions on ed:
https.//edstem.org/us/courses/16520/discussion/1043172

// includes for functions & types
defined elsewhere

#include <stdio.h>

#include “localstuff.h"

// symbolic constants Global variables & forward declarations go
##define MAGIC 42 first.

// global variables (if any)

Includes declarations & prototypes you
might want to share.

static int days per month[] = { 31,
28, 31, 30, ..};
// function prototypes

// (to handle “declare before use”) StrUCtu res

void some later function(char, int);

Source File

// function definitions
void do_this() { .. }

char *return_that(char s[], int n) Stuff in function definitions is local to those

{ ..} functions
int main(int argc, char ** argv) { .. }

/0 : Printf, scanf

Demo: fopen, fgets

Printf and scanf are two I/O functions, prototyped in stdio.h

=> Printf (print-format) ->
=> int printf(const char *format, ...) -
=> ‘Format’ is a string that can contain format tags >
-> +additional arguments to match tags

=> Number of arguments better match number of % ->
=> Corresponding arguments better have the right

types (%d, int; %f, float; %e, float (prints
scientific); %s, \0- terminated char*; ... Compiler

might check, but not guaranteed
€ Dbest case scenario: you crash

2

= printf("%$s: %d %g\n", p, yt+9,
3.0)

scanf (gets input, formatted)
int scanf(const char *format, ...)
‘Format’ is a string that can contain format
tags
+ additional arguments to match tags -
should be pointers to the right data type so
input can be stored in them
scanf (“sd %s”, &n, str);
scanf ("$*s %d", &a);

€ %*signores string until space, then reads in

an integer

/* printf example */
#include <stdio.h>

int main()

u u {
[printf (“"Characters: %c %c \n", 'a’, 65);
printf (“Decimals: %d %1ld\n", 1977, 650000L);
printf (“Preceding with blanks: %1@d \n", 1977);
printf (“Preceding with zeros: %@1@d \n", 1977);
printf ("Some different radices: %d %x %o %#x %#o \n", 100, 100, 100, 100, 100);
%[flags][width][.precision][length]specifier printf (“"floats: %4.2f %+.0e %E \n", 3.1416, 3.1416, 3.1416);
printf (“Width trick: %*d \n", 5, 10);
Where the specifier character at the end is the most significant component, since it defines the type and the printf ("%s \n", "A string");
interpretation of its corresponding argument: return 0;
specifier Output Example ¥
dori Signed decimal integer 392
u Unsigned decimal integer 7235
o Unsigned octal 610 flags description
x Unsigned hexadecimal integer 7fa - Left-justify within the given field width; Right justification is the default (see width sub-specifier).
z = = Forces to preceed the result with a plus or minus sign (+ or -) even for positive numbers. By default,
X Unngned hex.adeC”T’al integer (uppercase) TEA ¥ only negative numbers are preceded with a - sign.
f Decimal floating point, lowercase 392.65 (space)|If no sign is going to be written, a blank space is inserted before the value.
F Decimal floating point, uppercase 392.65 Used with o, x or X specifiers the value is preceeded with 8, @x or 8X respectively for values different
= = . z than zero.
s Scientific notation (mantissa/exponent), lowercase 3:9265e+2 * Used with a, A, e, E, f, F, g or G it forces the written output to contain a decimal point even if no more
E Scientific notation (mantissa/exponent), uppercase 3.9265E+2 digits follow. By default, if no digits follow, no decimal point is written.
g Use the shortest representation: %e or %f 392.65 o Left—y:;_ads the number with zeroes (@) instead of spaces when padding is specified (see width sub-
- specifier).
G Use the shortest representation: %E or %F 392.65 £)
a Hexadecimal floating point, lowercase -0xc.90fep-2 width description
A Hexadecimal floatin oint, uppercase _OXC.99FEP-2 Minimum number of characters to be printed. If the value to be printed is shorter than this number,
gp . UPP (number) the result is padded with blank spaces. The value is not truncated even if the result is larger.
€ Character 2 % The width is not specified in the format string, but as an additional integer value argument preceding
String of characters sample the argument that has to be formatted.
p Pointer address b8000000 — _—
- : .precision description
Nothing prlnted.. i . . For integer specifiers (d, i, o, u, x, X): precision specifies the minimum number of digits to be
n The corresponding argument must be a pointer to a signed int. written. If the value to be written is shorter than this number, the result is padded with leading
The number of characters written so far is stored in the pointed location. zeros. The value is not truncated even if the result is longer. A precision of @ means that no character
: - f is written for the value @.
L A % followed by another % character will write a single % to the stream. % HHRBER For a, A, e, E, ¥ and F specifiers: this is the number of digits to be printed after the decimal point (by

From cplusplvs.com

default, this is 6).

For g and G specifiers: This is the maximum number of significant digits to be printed.

For s: this is the maximum number of characters to be printed. By default all characters are printed
until the ending null character is encountered.

If the period is specified without an explicit value for precision, @ is assumed.

The precision is not specified in the format string, but as an additional integer value argument
preceding the argument that has to be formatted.

(f)scanf:

* Whitespace character: the function will read and ignore any whitespace characters encountered before

the next non-whitespace character (whitespace characters include spaces, newline and tab ¢ jnt main()

see isspace). A single whitespace in the format string validates any quantity of whitespace ct

extracted from the stream (including none). FILE* ptr = fopen("abc.txt", "r");
* Non-whitespace character, except format specifier (%): Any character that is not eith: if (so

: : 0 : A ptr == NULL) {

whitespace character (blank, newline or tab) or part of a format specifier (which begin with ¢

causes the function to read the next character from the stream, compare it to this non-white printf("no such file.");

character and if it matches, it is discarded and the function continues with the next charactel

the character does not match, the function fails, returning and leaving subsequent character: e 0
stream unread. }
¢ Format specifiers: A sequence formed by an initial percentage sign (%) indicates a format ¢
which is used to specify the type and format of the data to be retrieved from the stream and
the locations pointed by the additional arguments. /* Assuming that abc.txt has content in below
format

NAME AGE CITY

abc 12 hyderabad

bef 25 delhi

cce 65 bangalore */

char buf[16@];

while (fscanf(ptr, "%*s %*s %s ", buf) == 1) {
printf("%s\n", buf);

}

return 9;

From geeksforgeeks.org

Pointer Review

Pointers point to an address in memory
&x returns the address

Declare a pointer to a pointer type and it has a
specific type/size of memory:

T *x;0rT* x;0rT * x;0rT*X
(T is atype, xis a variable)

An expression to dereference a pointer
*x (more generally *expression)
Dereference - get the value at the address

Arrays have an implicit pointer type
T = x[n] impliesxisoftypeT*

int var = 349;

int *varptr =

AN

&var,;

varptr \

349

var

Pointers to pointers

Levels of pointers make sense:
l.e.. argv, *argv, **argv
Or:argv, argv[0],
argv[0] [0]
But
& (&p) doesn’t make sense
volid f(int x) {
int*p = &x;
int**q = &p;
// %, P, *P, 4, *q, **q

Integer, pointer to integer, pointer to
pointer to integer

&p is the address of ‘p’,

& (&p) would be the address of the
address of p, but that value isn’t stored
separately anywhere and doesn’t have an
address

Tryusingprintf (“The address
of x is %p\n”, &x);

Storage

Variables need a place to live in memory

Get ‘allocated’ a physical space in memory (with an address)
Size of memory allocation depends on datatype

Get ‘deallocated’ to release the space in memory

code globals heap ->

™~

Address ‘0’
Address ‘4’

<- stack

Address 2°4-1’ or ‘23-1’

Scope

Variables may be
accessed by the caller
only at certain times -
this is scope

Scope and storage
are related, but not
the same thing

-Global variables

(@)

©)

Scope: entire program

Not desirable (violate encapsulation) But
can be OK for truly global data like
conversion tables, physical constants,
etc.

Static global variables

Scope: containing file

Static functions cannot be called from
other files

Static local variables

Scope: that function, rarely used

©)

(@)

Scope: that block — With recursion,

multiple copies of same variable (one per

stack frame/function activation)

allocated before
main, deallocated
after main -
memory in ‘global’
block

allocated “when
reached”
deallocated “after
block” - memory in
frame on stack

The stack

Stack stores active functions & local

Frames deleted when function returns
Local variables do not persist

Local variables must have defined size
Can not make run-time adjustments
(Arrays must have length)

al variables

high

stack grows downward

low

callee stack frame

caller stack frame

Py

<- stack

P

caller -

callee

caller:

old frame pointer

local variables

-

top of stack

SP

FP callee:

save args
call function

save ret_addr

jmp function imp ret_addr

compute ffame size
save old

Call stack

Local variable initialization

Memory allocation and initialization are not the same thing

Unlike Java, you MUST provide a value to initialize a bit of
memory

It is possible to access un-initialized bits
unlike Java with sets defaults and checks for initialization
best case scenario: you crash

Arguments

Demo

Storage allocation and variable
scope is like local variables (i.e.
space is part of the function frame
added to the stack, and the
variable may be used in the
function).

All arguments passed by value.
(i.e. acopy of the value is made
and assigned to the variable.)

Stack (main)

mainint = 3;
| -
_ N\

mainintptr =

returnint (random val)

Stack (demoint)

d = 3; mainint = 3;
| -
~

mainintptr =

returnint (random val)

Stack (dempointer)

///\\bmainint = 3;

—

mainintptr =

returnint (random val)

Stack (morepointer)

///\\bmainint = 3;

| N ~
d = 30 mainintptr =

q = \ returnint (random val)

Dangling
pointers

Pointers referring to
memory that has been
released (pemo)

Dangling

Pointer

Garbage collecting languages (like Java)
only delete memory that is unreachable
to avoid this problem.

Dangling Pointers (line 4)

X=1

p >?

Dangling Pointers (line 7)

X=1

Dangling Pointers (line 13)

X=1

S

void f1l(int* p) { // takes a pointer

: o s,
Arrays again

“A reference to an object of type int* £2() {
array-of-T which appears in an int x[3]; // x on stack, is pointer
expression decays (with three x[0] = 5;

exceptions) into a pointer to its first
element; the type of the resultant
pointer is pointer-to-T.”

(&x) [0] = 5; // address of x, points to
// same place but different T

*x = 5; // put value at location x
http://c-fag.com/aryptr/aryptrequiv.ht *(x+0) = 5; // Also put value at x
- £1(x) ;

fl(&x); // wrong - watch types!

Right: xisthe array, which decays
to a pointer to an int and &x
returns a pointer to the entire
array.

x = &x[2]; // No! X isn’t really a pointer
int *p = &x[2];
return x; // correct type, but is a

// dangling pointer

http://c-faq.com/aryptr/aryptrequiv.html
http://c-faq.com/aryptr/aryptrequiv.html

Pointer arithmetic

e IfphastypeT*orT[] and *phastypeT
e If p pointsto oneitem of type T, p+1 points to a place in memory for

the nextitem of type T
o So, p[0] isone item of type T, p+i = p[i]
e T[] alwayshastypeT*, evenifitisdeclared as T[]

o Implicit array promotion
Result: Arrays are always passed by reference, not by value. (The

information passed is the address of where the values are

stored.)

https://chortle.ccsu.edu/CPuzzles/CPuzzlesMain.html

https://chortle.ccsu.edu/CPuzzles/CPuzzlesMain.html

