
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2022

Lecture 16 – Version control and git

UW CSE 374 Spring 2022 1

Miderm

• Maybe a little too long, but it the main purpose was to
review/consolidate “what we’ve done” and it did that

• Grading is mostly done
– Still need to take care of a couple of things, then

expect to release scores and sample solution in
the next day or two

• More about scores and “what it all means” for course
grades on Wed. But basically this is only about a
fairly small % of the course grade, and even if it didn’t
go well, it’s only part of the picture and is not a make-
or-break score.

UW CSE 374 Spring 2022 2

Administrivia

• HW5 due Thursday night. How’s it going?

• HW6 writeup posted soon – please read when available
– Part I due a week from Thur. – skeleton code & Makefile
– Full assignment due following Thursday
– Detailed discussion in next couple of classes

• Partner survey posted before class, due 11 pm Wed.
– Please follow instructions – it’s not hard!
– Will create gitlab repositories for groups after that

• Watch for email from gitlab.cs.washington.edu with repo
information and link, then log on, set up keys, clone repo,
and try it out

UW CSE 374 Spring 2022 3

Administrivia (added Wed.)
• HW4 feedback released last night

– Remember that gradescope’s “total score” is meaningless. We keep
track of things like extra credit and program operation vs code quality
separately. If you do not do any extra credit parts it does not affect
(i.e., lower) your course grade.

• HW5 due tomorrow night. How’s it going?
– Watch the late days! Some people are down to 1 or 0 (updated

numbers in the canvas gradebook). If you run out of time, submit your
best effort at the deadline for partial credit. No credit after that.

• HW6 writeup coming soon – please read when available

• HW6 partner survey due 11 pm tonight
– Please follow instructions – it’s not hard!
– Will create gitlab repositories for groups after that

• Watch for email from gitlab.cs.washington.edu with repo info and
link, then log on, set up keys, clone repo, and try it out

UW CSE 374 Spring 2022 4

Discussion board request

• Please use descriptive titles and provide enough
context so readers can find relevant postings and
understand them without a treasure hunt.
– Can someone else discover what your posting is

about from the title? If not, please try to fix that.
• Suggestion: Avoid using “clarification” or

“question” in titles J
– e.g., “clarification on hw5” is not helpful; “is there a

max dictionary size” is much more useful, especially
if it in the hw5 category

• And please use public postings for general questions
so all can benefit

UW CSE 374 Spring 2022 5

Where we are

• Learning tools and concepts relevant to multi-file, multi-person,
multi-platform, multi-month projects

• Today: Managing source code
– Reliable backup of hard-to-replace information (i.e., sources)
– Tools for managing concurrent and potentially conflicting

changes from multiple people
– Ability to retrieve previous versions

• Note: None of this has anything to do with code. Like make,
version-control systems are typically not language-specific.
– Many people use version control systems for everything they

do (code, papers, slides, letters, drawings, pictures, . . .)
• Traditional systems were best at text files (comparing

differences, etc.); newer ones work fine with others too

6UW CSE 374 Spring 2022

Version-control systems

• There have been many plenty – sccs, rcs, cvs,
subversion, git, mercurial, perforce, sourcesafe – but
git is the dominate one in use today

• Terminology and commands aren’t particularly
standard, but once you know one, the others aren’t
difficult – the basic concepts are the same

• git: distributed version control
– Every user has a full copy of the repository; allows

easy branching & merging for large collaborations
(e.g., linux kernel)

– git is the basic tool. Can be used alone or with
centralized repositories. GitHub is the best know;
we will use CSE GitLab (almost identical) for hw6

7UW CSE 374 Spring 2022

What is git?

If that doesn’t fix it, git.txt contains the phone
number of a friend of mine who understands
git. Just wait through a few minutes of “It’s
really pretty simple, just think of branches
as…”; and eventually you’ll learn the
commands that will fix everything.

8UW CSE 374 Spring 2022

Git basics – general version

• A project lives in a repository
• Each user has their own copy of the repository
• A user commits changes to their copy to save them
• Other users can pull changes from that repository

Alice

Bob

Carol

R
R

R

9

Git basics – central repo (we’ll use)

• Users have a shared repository
(called origin in the git literature; for
cse374 it is your group’s repository
on the CSE GitLab server)

• Each user clones the repository
• Users commit changes to their

local repository (clone)
• To share changes, push them to

GitLab after verifying them locally
• Other users pull from Gitlab to get

changes (instead of from each
other)

GitLab

Bob
Carol

R R R

Alice

R

10UW CSE 374 Spring 2022

Tasks

Learn the common cases; look up the uncommon ones.
In a production shop using git…
• Create

– a new repository/project (rare – once or twice a year)
– a new branch (days to weeks; not in cse374, but used

in production shops for independent development)
– a new commit (daily or more, each significant change)

• Push to repo
– regularly, when you want to back up or share work –

even with yourself on a different computer
• Other operations as needed (check version history,

differences, …)

11UW CSE 374 Spring 2022

Repository access

A repository can be:
• Local: run git commands in repo directory or

subdirectory
• Remote: lots of remote protocols supported (ssh,

https, …) depending on repository configuration
– Specify user-id and machine
– Usually need git and ssh installed locally
– Need authentication (use ssh key with GitLab)

• cse374/HW6 use ssh access to remote GitLab server
• Feel free to experiment with private, local repos or

private repos on gitlab
12UW CSE 374 Spring 2022

Getting started (GitLab)

• Create local ssh keys (ssh-keygen) and add to your
GitLab account (instructions on gitlab, linked from cse374
git tutorial; only need to do this once)

• Set up a repository (we’ll do this for you on hw6; if you do
it yourself you get to pick name, location)

+New Project (on gitlab web dashboard)
• Clone a working copy of the repo to your machine

cd where-you-want-to-put-it
git clone git@gitlab.cs.washington.edu:path/to/repo

– url for above comes from gitlab page for your project,
find using link in email you get when project created or
on by logging in to gitlab

– If git asks for password, keys aren’t set up right – fix it!

13UW CSE 374 Spring 2022

Set git Defaults

• Git keeps a local .gitconfig file in your home directory with info
like your name, email, and other settings

• Most defaults are sensible, but there are some that you
should set so git won’t nag you every time you try to commit
or pull

• Enter these commands once before you use git the first time:
• git config --global user.name "Your Name Here”
• git config --global user.email netid@uw.edu
• git config --global pull.rebase false

(of course, substitute your own name and email address)

UW CSE 374 Spring 2022 14

Routine git/GitLab local use

• Edit a file, say stuff.c
• Add file(s) to list to be saved in repo on next commit

git add stuff.c
• Commit all added changes

git commit –m “reason/summary for commit”
• Repeat locally until you want to push accumulated

commits to GitLab server to share with partner or for
backup…

15UW CSE 374 Spring 2022

git/GitLab use (sharing changes)

• Good practice – grab any changes on server not yet
in local repo before any local commits

git pull
– Also do this any time you want to merge changes

pushed by your partner
• Test, make any needed changes, do git add / git

commit to get everything cleaned up locally
• When ready, push accumulated changes to server

git push
• If push blocks because there are newer changes on

server, do a git pull, accept any merge messages,
cleanup, add/commit/push again

UW CSE 374 Spring 2022 16

File rename/move/delete

• Once files have been committed to gitlab repository,
need to tell git about changes to git-managed files

git mv files
git rm files

– git will make the changes locally then make
corresponding changes to remote GitLab repo
when you push

– If you use regular shell mv/rm commands, git will
give you all sorts of interesting messages when
you run git status and you will have to clean up J

17UW CSE 374 Spring 2022

Demo

18

Some examples

• Update local copy to match GitLab copy
git pull

• Make changes
git add file.c
git mv oldfile.c newfile.c
git rm obsolete.c

• Commit changes to local repo
git commit –m “fixed bug in getmem”

• Examine changes
git status (see uncommitted changed files, will also

show you how to revert changes, etc.)
git diff file (see uncommitted changes in file)
git log (see history of commits)

• Update GitLab shared repo to reflect local changes
git push

UW CSE 374 Spring 2022 19

Conflicts

• This all works great if there is one working copy.
• But if two users make changes to their own local copies, the two

versions must be merged
– git will merge automatically when you do a “git pull”
– Usually successful if different lines or different files changed

• If git can’t automatically merge, you need to fix manually
– git will tell you which files have conflicts (git status)
– Look in files, you will see things like

<<<<<<<< HEAD
for (int i=0; i<10; i++)
===============
for (int i=0; i<=10; i++)
>>>>>>>> master

– Change these lines to what you actually want, then
add/commit the changes (and push if you want to)

UW CSE 374 Spring 2022 20

git gotchas

• Do not forget to add/commit/push files or your group
members will be very unhappy

• Keep in the repository exactly (and only) what you need to
build the program
– Yes: foo.c foo.h Makefile
– No: foo.o a.out foo.c~
– You don’t want versions of .o files etc.:

• Replaceable things have no value
• They change a lot when .c files change a little
• Developers on other machines can’t use them

• A simple .gitignore file can be used to tell git which sorts of
files should not be tracked (*.o, *~, .DS_Store (OS X))
– Goes in top-level repo directory; useful to push to

GitLab and share (we will push a default one in new
hw6 repos)

UW CSE 374 Spring 2022 21

Summary

• Another tool for letting the computer do what it’s good at:
– Much better than manually emailing files, adding dates

to filenames, etc.
– Managing versions, storing the differences
– Keeping source-code safe
– Preventing concurrent access, detecting conflicts

• git/Gitlab tutorial for CSE 374 on website
• Links to GitLab on website and in CSE 374 tutorial

– And in the mail you get when your repo is created
• Full git docs and book are online, free, downloadable

– Beware of complexity – much of what they describe is
beyond what we need for CSE 374. Keep it simple!

UW CSE 374 Spring 2022 22

