
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2022

Lecture 13 – C: Multi-File Programs, Header Files &
The Rest of the Preprocessor

UW CSE 374 Spring 2022 1

Administrivia

• HW5 out now, due in a week
– Short demo today

• HW6 – multiple parts with a partner
– Pick a partner by early next week. Partner info
must be submitted online by 11 pm next
Wednesday (details on how/where later this week)

UW CSE 374 Spring 2022 2

The story so far…

• We’ve looked at the basics of the preprocessor
– #include to access declarations in header files
– #define for symbolic constants

• Now:
– More details; where it fits
– Multiple source and header files
– A bit about macros (somewhat useful, somewhat a

warning)

3UW CSE 374 Spring 2022

Multi-File C Programs

• Our first C programs had a single file with multiple
functions, one named main where execution starts

• Real programs need to be split into multiple source
files (modules) that can be built/tested independently
and linked together to build the final program.

• Modularity: the degree to which components of a
system can be separated and recombined
– “Loose coupling” and “separation of concerns”
– Modules can be developed independently
– Modules can be re-used in different projects

UW CSE 374 Spring 2022 4

C Header Files and Modularity

• Header: a C file whose only purpose is to be #include’d
• Generally has a filename .h extension
• Holds the variables, types, and function prototype

declarations that make up the interface to a module
• Main Idea: split program into modules of .h/.c pairs of files

– File name.c implements a module that has an
associated name.h that specifies it

– name.h declares the interface to that module
– Other modules can use name by #include-ing name.h
– They should assume as little as possible about the

implementation in name.c

UW CSE 374 Spring 2022 5

Example: program using a linked list

UW CSE 374 Spring 2022 6
6

#include <stdlib.h>
#include <assert.h>
#include "ll.h"

Node* Push(Node* head,
int element) {

... // implementation here
}

typedef struct node_st {
int element;
struct node_st* next;

} Node;

Node* Push(Node* head,
int element);

#include "ll.h"

int main(int argc, char** argv) {
Node* list = NULL;

list = Push(list, 17);
list = Push(list, 42);

...

return EXIT_SUCCESS;
}

ll.c

ll.h

example_ll_customer.c

Compiling the Program

• Four (well, really three) steps
1. Compile example_ll_customer.c to get example_ll_customer.o
2. Compile ll.c to get ll.o
3. Link .o files to get example_ll_customer executable
4. Test, debug, …

UW CSE 374 Spring 2022 7

bash $ gcc -Wall -g -std=c17 -c -o example_ll_customer.o example_ll_customer.c
bash $ gcc -Wall -g -std=c17 -c -o ll.o ll.c
bash $ gcc -Wall -g -std=c17 -o example_ll_customer ll.o example_ll_customer.o
bash $./example_ll_customer
payload 42
payload 17
popped 42
popped 17

-c compile .c to .o and
stop without linking

link .o files to get
executable program

While we’re at it…
• Check for memory leaks : valgrind

– Super useful tool for hw5

UW CSE 374 Spring 2022 8

bash $ valgrind --leak-check=full ./example_ll_customer
==6697== Memcheck, a memory error detector
==6697== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==6697== Using Valgrind-3.17.0 and LibVEX; rerun with -h for copyright info
==6697== Command: ./example_ll_customer
==6697==
payload 42
payload 17
popped 42
popped 17
==6697==
==6697== HEAP SUMMARY:
==6697== in use at exit: 0 bytes in 0 blocks
==6697== total heap usage: 3 allocs, 3 frees, 1,056 bytes allocated
==6697==
==6697== All heap blocks were freed -- no leaks are possible
==6697==
==6697== For lists of detected and suppressed errors, rerun with: -s
==6697== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

No leaks!

The compilation picture

gcc does all this for you (reminder)
• -E to only preprocess; result on stdout (rare)
• -c to stop with .o (common for individual files in larger

program)

9UW CSE 374 Spring 2022

More about multiple files

Typical usage:
• Preprocessor #include to read file containing

declarations describing code
• Linker combines your .o files and other code

– By default, the “standard C library”
– Other .o and .a files
– Whole lecture on linking and libraries later…

10UW CSE 374 Spring 2022

The preprocessor

• Rewrites your .c file before the compiler gets at the code.
– Lines starting with # tell it what to do

• Can do crazy things (please don’t); uncrazy things are:
1. Including contents of header files
2. Defining constants and parameterized macros

• Token-based, but basically textual replacement
• Easy to misdefine and misuse

3. Conditional compilation
• Include/exclude part of a file
• Example uses: code for debugging, code for

particular computers (handling portability issues),
“the trick” for including header files only once

11UW CSE 374 Spring 2022

File inclusion (review)

#include <hdr.h>
• Search for file hdr.h in “standard include directories” and

include its contents in this place
– Typically lots of nested includes, result not fit for

human consumption
– Idea is simple: declaration of standard library routines

are in headers; allows correct use after declaration
#include "hdr.h"

– Same, but first look in current directory
– How to break your program into smaller files that can

call routines in other files
• gcc -I option: look first in specified directories for headers

(keep paths out of your code files) (not needed for 374)

12UW CSE 374 Spring 2022

C Module Conventions

Most C projects adhere to the following rules:
• .h files only contain declarations, never definitions
• .c files never contain prototype declarations for functions

that are intended to be exported through the module interface
– Those function prototype declarations belong in the .h file

• NEVER #include a .c file – only #include .h files
• #include all of headers you reference, even if another

header (accidentally or not) includes some of them
• Any .c file with an associated .h file (a module) should be

able to be compiled into a .o file
– The .c file should #include the .h file; the compiler will

check declarations and definitions for consistency

UW CSE 374 Spring 2022 13

Header file conventions

Conventions: always follow these when writing a header file
1. Give included files names ending in .h; only include these

header files. Never #include a .c source file
2. Do not put functions definitions in a header file; only struct

definitions, prototypes (declarations with comments), and
other #includes

3. Put all your #includes at the beginning of a file
4. For header file foo.h start it with:

#ifndef FOO_H
#define FOO_H

and end it with:
#endif

(We will learn why very soon)

14UW CSE 374 Spring 2022

Simple macros (review)

Symbolic constants and other text
#define NOT_PI 22/7
#define VERSION 3.14
#define FEET_PER_MILE 5280
#define MAX_LINE_SIZE 5000

• Replaces all matching tokens in rest of file
– Knows where “words” start and end (unlike sed)
– Has no notion of scope (unlike C compiler)
– (Rare: can shadow with another #define or use

#undef to remove)

15UW CSE 374 Spring 2022

Macros with parameters

#define TWICE_AWFUL(x) x*2
#define TWICE_BAD(x) ((x)+(x))
#define TWICE_OK(x) ((x)*2)
double twice(double x) { return x+x; } // best (editorial opinion)

• Replace all matching “calls” with “body” but with text of
arguments where the parameters are (just string substitution)

• Gotchas (understand why!):
y=3; z=4; w=TWICE_AWFUL(y+z);
y=7; z=TWICE_BAD(++y); z=TWICE_BAD(y++);

• Common misperception: Macros avoid performance overhead of
a function call (maybe true in 1975, not now)

• Macros can be more flexible though (TWICE_OK works on ints
and doubles without conversions (which could round))

UW CSE 374 Spring 2022 16

Justifiable uses

Parameterized macros are generally to be avoided (use
functions), but there are things functions cannot do:

#define NEW_T(t, howmany) ((t*)malloc((howmany)*sizeof(t))

#define PRINT(x) printf("%s:%d %s\n", __FILE__, __LINE__,x)

17UW CSE 374 Spring 2022

Conditional compilation

#ifdef FOO (matching #endif later in file)
#ifndef FOO (matching #endif later in file)
#if FOO > 2 (matching #endif later in file)
(You can also have a #else inbetween somewhere.)
Simple use: #ifdef DEBUG // do following only when debugging

printf(...);
#endif

Fancier: #ifdef DEBUG // use DBG_PRINT for debug-printing
#define DBG_PRINT(x) printf("%s",x)
#else
#define DBG_PRINT(x) // replace with nothing
#endif

• Note: gcc -D FOO makes FOO “defined”

18UW CSE 374 Spring 2022

Back to header files

• Now we know what this means:
#ifndef SOME_HEADER_H
#define SOME_HEADER_H
... rest of some_header.h ...
#endif

• Assuming nobody else defines SOME_HEADER_H
(convention), the first #include "some_header.h" will do
the define and include the rest of the file, but the second
and later will skip everything
– More efficient than copying the prototypes over and

over again
– In presence of circular includes, necessary to avoid

creating duplicate definitions by multiple #includes of
the same header file

• So we always do this
19UW CSE 374 Spring 2022

C preprocessor summary

• A few easy to abuse features and a bunch of
conventions (for overcoming C’s limitations).
– #include (the way you say what other definitions

you need; cycles are fine with “the trick”)
– #define (avoids magic constants; parameterized

macros have a few justifiable uses; token-based
text replacement)

– #if... (for showing the compiler less code)

20UW CSE 374 Spring 2022

