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Administrivia

• HW5 out now, due in a week
– Short demo today

• HW6 – multiple parts with a partner
– Pick a partner by early next week.  Partner info 
must be submitted online by 11 pm next 
Wednesday (details on how/where later this week)
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The story so far…

• We’ve looked at the basics of the preprocessor
– #include to access declarations in header files
– #define for symbolic constants

• Now:
– More details; where it fits
– Multiple source and header files
– A bit about macros (somewhat useful, somewhat a 

warning)
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Multi-File C Programs

• Our first C programs had a single file with multiple 
functions, one named main where execution starts

• Real programs need to be split into multiple source 
files (modules) that can be built/tested independently 
and linked together to build the final program.

• Modularity: the degree to which components of a 
system can be separated and recombined
– “Loose coupling” and “separation of concerns”
– Modules can be developed independently
– Modules can be re-used in different projects
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C Header Files and Modularity

• Header:  a C file whose only purpose is to be #include’d
• Generally has a filename .h extension
• Holds the variables, types, and function prototype 

declarations that make up the interface to a module
• Main Idea: split program into modules of .h/.c pairs of files

– File name.c implements a module that has an 
associated name.h that specifies it

– name.h declares the interface to that module
– Other modules can use name by #include-ing name.h
– They should assume as little as possible about the 

implementation in name.c
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Example: program using a linked list
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#include <stdlib.h>
#include <assert.h>
#include "ll.h"

Node* Push(Node* head, 
int element) {

... // implementation here
}

typedef struct node_st {
int element;
struct node_st* next;

} Node;

Node* Push(Node* head, 
int element);

#include "ll.h"

int main(int argc, char** argv) {
Node* list = NULL;

list = Push(list, 17);
list = Push(list, 42);

...

return EXIT_SUCCESS;
}

ll.c

ll.h

example_ll_customer.c



Compiling the Program

• Four (well, really three) steps
1. Compile example_ll_customer.c to get example_ll_customer.o
2. Compile ll.c to get ll.o
3. Link .o files to get example_ll_customer executable
4. Test, debug, …
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bash $ gcc -Wall -g -std=c17 -c -o example_ll_customer.o example_ll_customer.c
bash $ gcc -Wall -g -std=c17 -c -o ll.o ll.c
bash $ gcc -Wall -g -std=c17 -o example_ll_customer ll.o example_ll_customer.o
bash $ ./example_ll_customer
payload 42
payload 17
popped 42
popped 17

-c compile .c to .o and 
stop without linking

link .o files to get 
executable program



While we’re at it…
• Check for memory leaks : valgrind

– Super useful tool for hw5
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bash $ valgrind --leak-check=full ./example_ll_customer
==6697== Memcheck, a memory error detector
==6697== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==6697== Using Valgrind-3.17.0 and LibVEX; rerun with -h for copyright info
==6697== Command: ./example_ll_customer
==6697== 
payload 42
payload 17
popped 42
popped 17
==6697== 
==6697== HEAP SUMMARY:
==6697==     in use at exit: 0 bytes in 0 blocks
==6697==   total heap usage: 3 allocs, 3 frees, 1,056 bytes allocated
==6697== 
==6697== All heap blocks were freed -- no leaks are possible
==6697== 
==6697== For lists of detected and suppressed errors, rerun with: -s
==6697== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

No leaks!



The compilation picture

gcc does all this for you (reminder)
• -E to only preprocess; result on stdout (rare)
• -c to stop with .o (common for individual files in larger 

program)
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More about multiple files

Typical usage:
• Preprocessor #include to read file containing 

declarations describing code
• Linker combines your .o files and other code

– By default, the “standard C library”
– Other .o and .a files
– Whole lecture on linking and libraries later… 
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The preprocessor

• Rewrites your .c file before the compiler gets at the code.
– Lines starting with # tell it what to do

• Can do crazy things (please don’t); uncrazy things are:
1. Including contents of header files
2. Defining constants and parameterized macros

• Token-based, but basically textual replacement
• Easy to misdefine and misuse

3. Conditional compilation
• Include/exclude part of a file
• Example uses: code for debugging, code for 

particular computers (handling portability issues), 
“the trick” for including header files only once
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File inclusion (review)

#include <hdr.h>
• Search for file hdr.h in “standard include directories” and 

include its contents in this place
– Typically lots of nested includes, result not fit for 

human consumption
– Idea is simple: declaration of standard library routines 

are in headers; allows correct use after declaration
#include "hdr.h"

– Same, but first look in current directory
– How to break your program into smaller files that can 

call routines in other files
• gcc -I option: look first in specified directories for headers 

(keep paths out of your code files) (not needed for 374)
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C Module Conventions

Most C projects adhere to the following rules:
• .h files only contain declarations, never definitions
• .c files never contain prototype declarations for functions 

that are intended to be exported through the module interface
– Those function prototype declarations belong in the .h file

• NEVER #include a .c file – only #include .h files
• #include all of headers you reference, even if another 

header (accidentally or not) includes some of them
• Any .c file with an associated .h file (a module) should be 

able to be compiled into a .o file
– The .c file should #include the .h file; the compiler will 

check declarations and definitions for consistency
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Header file conventions

Conventions: always follow these when writing a header file
1. Give included files names ending in .h; only include these 

header files. Never #include a .c source file
2. Do not put functions definitions in a header file; only struct 

definitions, prototypes (declarations with comments), and 
other #includes

3. Put all your #includes at the beginning of a file
4. For header file foo.h start it with:

#ifndef FOO_H
#define FOO_H

and end it with:
#endif

(We will learn why very soon)
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Simple macros (review)

Symbolic constants and other text
#define NOT_PI  22/7
#define VERSION 3.14
#define FEET_PER_MILE  5280
#define MAX_LINE_SIZE 5000

• Replaces all matching tokens in rest of file
– Knows where “words” start and end (unlike sed)
– Has no notion of scope (unlike C compiler)
– (Rare: can shadow with another #define or use 

#undef to remove)
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Macros with parameters

#define TWICE_AWFUL(x) x*2
#define TWICE_BAD(x) ((x)+(x))
#define TWICE_OK(x) ((x)*2)
double twice(double x) { return x+x; }   // best (editorial opinion)

• Replace all matching “calls” with “body” but with text of 
arguments where the parameters are (just string substitution)

• Gotchas (understand why!):
y=3;  z=4;  w=TWICE_AWFUL(y+z);
y=7;  z=TWICE_BAD(++y);  z=TWICE_BAD(y++);

• Common misperception: Macros avoid performance overhead of 
a function call (maybe true in 1975, not now)

• Macros can be more flexible though (TWICE_OK works on ints
and doubles without conversions (which could round))
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Justifiable uses

Parameterized macros are generally to be avoided (use 
functions), but there are things functions cannot do:

#define NEW_T(t, howmany)  ((t*)malloc((howmany)*sizeof(t))

#define PRINT(x)  printf("%s:%d %s\n", __FILE__, __LINE__,x)
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Conditional compilation

#ifdef FOO (matching #endif later in file)
#ifndef FOO (matching #endif later in file)
#if FOO > 2 (matching #endif later in file)
(You can also have a #else inbetween somewhere.)
Simple use:   #ifdef DEBUG // do following only when debugging

printf(...);
#endif

Fancier:         #ifdef DEBUG // use DBG_PRINT for debug-printing
#define DBG_PRINT(x) printf("%s",x)
#else
#define DBG_PRINT(x) // replace with nothing
#endif

• Note: gcc -D FOO makes FOO “defined”
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Back to header files

• Now we know what this means:
#ifndef SOME_HEADER_H
#define SOME_HEADER_H
... rest of some_header.h ...
#endif

• Assuming nobody else defines SOME_HEADER_H 
(convention), the first #include "some_header.h" will do 
the define and include the rest of the file, but the second 
and later will skip everything
– More efficient than copying the prototypes over and 

over again
– In presence of circular includes, necessary to avoid 

creating duplicate definitions by multiple #includes of 
the same header file

• So we always do this
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C preprocessor summary

• A few easy to abuse features and a bunch of 
conventions (for overcoming C’s limitations).
– #include (the way you say what other definitions 

you need; cycles are fine with “the trick”)
– #define (avoids magic constants; parameterized 

macros have a few justifiable uses; token-based 
text replacement)

– #if... (for showing the compiler less code)
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