
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2022

Lecture 12 – C: structs, linked lists, and casts

UW CSE 374 Spring 2022 1

Where we are

• We’ve seen most of the basic stuff about C, but we
still need to look at structs (aka records or objects
without methods) and linked data structures
– Understand the code posted with today’s lecture;

we won’t have time to walk through all the details
• Next: Rest of the C preprocessor (# stuff, macros),

building multi-file programs
• Then: more programming tools (make)
• That will set us up for the next programming project

– Which will start right after Monday’s midterm

2UW CSE 374 Spring 2022

structs

• A struct is a record (i.e., a collection of data fields)
• A pointer to a struct is like a Java object with no methods
• x.f is for field access. (if is x not a pointer – new!)
• (*x).f in C is like x.f in Java. (if x is a pointer)
• x->f is an abbreviation for (*x).f
• There is a huge difference between a struct (value)

parameter and a pointer to a struct
• There is a huge difference between local variables that

are structs and those that are pointers to structs
• Again, left-expressions evaluate to locations (which can

be whole struct locations or just a field’s location)
• Again, right-expressions evaluate to values (which can be

whole structs or just a field’s contents)

3UW CSE 374 Spring 2022

struct tags

• A typical struct definition looks like:
struct person_info {
char * name;
int age;

}

• The identifier person_info after “struct” is not a
type name, it is a struct tag. The “type” of this struct
is struct person_info.
– So type names (int, char) and struct tags are

not the same kind of names
4UW CSE 374 Spring 2022

C parameters - revisited

• C has a uniform rule for parameters (almost): When a
function is called, each parameter is initialized with a
copy of the corresponding argument (int, char, ptr,…)
– This holds even for structs! – a copy is created
– There is no further connection between the

argument and the parameter value in the function
• But they can point to the same thing, of course

• But: if the argument is an array name, the function
parameter is initialized with a pointer to the array
argument instead of a copy of the entire array
– Implicit array promotion (we already knew this)

5UW CSE 374 Spring 2022

struct parameters

• A struct argument is copied (call-by-value)
• It is far more common to use a pointer to a struct as an

argument instead of copying an entire struct
– Gives (almost the) same semantics as Java object

references
– Usually what you want – pointer to data that lives

outside the function
• Also avoids cost of copying a possibly large object

– But occasionally you want call-by value (small things
like complex numbers, geometric points, …)

• Puzzle: if an argument is an array containing a single
struct, is it copied or is it promoted to a pointer?
– What if it’s a struct containing only a single array?

6UW CSE 374 Spring 2022

Linked lists, trees, and friends

• Very, very common data structures
• Building them in C

– Use malloc to create nodes
– Need to use casts for “generic” types
– Memory management issues if shared nodes
– Usually need to explicitly free entire thing when

done
– Shows tradeoffs between lists and arrays

• Look at the sample code and understand what it
does/how it does it

7UW CSE 374 Spring 2022

C types

• There are an infinite number of types in C, but only a few
ways to make them:
– char, int, double, etc. (many variations like unsigned

int, long, short, …; mostly “implementation-defined”)
– void (placeholder; a “type” no expression can have)
– struct T where there is already a declaration for that

struct type
– Array types (basically only for stack arrays and struct

fields, every use is automatically converted to a pointer
type)

– T* where T is a type
– union T, enum E (later, maybe)
– function-pointer types (later)
– typedefs (just expand to their definition; type synonym)

8UW CSE 374 Spring 2022

Typedef

• Defines a synonym for a type – does not declare a new type
• Syntax

typedef type name;
After this declaration, writing name is the same as writing type

Caution: array typedef syntax is weirder
• Examples:

typedef int int32; // use int32 for portability
typedef struct point { // type tag optional (sortof)

int32 x, y;
} Point2d; // Point2d is synonym for struct
typedef Point2d * ptptr; // pointer to Point2D

Point2d p; // var declaration
ptptr ptlist; // declares pointer

9UW CSE 374 Spring 2022

Casts, part 1

• Syntax: (t)e where t is a type and e is an expression (same
as Java)

• Semantics: It depends
– If e is a numeric type and t is a numeric type, this is a

conversion
• To wider type, get same value
• To narrower type, may not (will get mod)
• From floating-point to integral, will round (may overflow)
• From integral to floating-point, may round (but int to

double is exact on most machines)
Note: Java is the same without the “most machines” part
Note: Lots of implicit conversions such as in function calls
Bottom Line: Conversions involve actual operations;
(double)3 is a very different bit pattern than (int)3

10UW CSE 374 Spring 2022

Casts, part 2
• If e has type t1*, then (t2*)e is a (pointer) cast.

– You still have the same pointer (index into the address space).
– Nothing “happens” at run-time.
– You are just “getting around” the type system, making it easy to

write any bits anywhere you want.
– Old example: malloc has return type void*

void evil(int **p, int x) {
int * q = (int*)p;
*q = x;

}
void f(int **p) {

evil(p,345);
**p = 17; // writes 17 to address 345 (HYCSBWK)

}

Note: The C standard is more picky than we suggest, but few people know that and little code obeys the official rules.
11UW CSE 374 Spring 2022

C pointer casts, continued

Questions worth answering:
• How does this compare to Java’s casts?

– Unsafe, unchecked (no “type fields” in objects)
– Otherwise more similar than it seems

• When should you use pointer casts in C?
– For “generic” libraries (malloc, linked lists,

operations on arbitrary (generic) pointers, etc.)
– For “subtyping” (later)

• What about other casts?
– Casts to/from struct types (not struct pointer

casts) are compile-time errors.
12UW CSE 374 Spring 2022

