
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2022

Lecture 11 – gdb and Debugging

UW CSE 374 Spring 2022 1

Administrivia

• HW4 out now, due Thursday, April 28, 11 pm:
– C code and libraries.
– Some tools: gdb (debugger) and clint.py (style checker).

gdb demo today.

• Midterm the following Monday, May 2, in class
– Everything up to hw4/basic C
– Closed book, but you can have one 5x8 notecard with any

hand-written notes you want on both sides
• Will have reference summaries on test as needed
• Free blank notecards after class

– Old exams on web now for studying
– Review Q&A Sunday afternoon, May 1, 2 pm, location tba

2UW CSE 374 Spring 2022

Agenda

• Debuggers, particularly gdb
• Why?

– To learn general features of breakpoint-debugging
– To learn specifics of gdb
– To learn general debugging “survival skills”

• Skill #1: don’t panic!
• Skill #2: be systematic – have a plan

3UW CSE 374 Spring 2022

How to avoid debugging

• Don’t put bugs in the program!!
• Think before typing – design before coding

– 20 min. of thinking can save 3 hours debugging – good
tradeoff

• Write down design (comments) as you go
– Functions: declaration+comments should be complete spec
– Significant data: declaration + comments should be

complete spec
– If someone has to read the code to figure out how to use

something or understand data structures, comments are bad
– Review/check comments and compare to code as you work

• Will catch errors before you run the program
• Turn on compiler warnings (-Wall); use assert; get the computer

to find problems for you.
• But things can still go wrong…

4UW CSE 374 Spring 2022

But bugs happen…

• How to think about debugging: scientific method
1. Observation: something is wrong. What? (precisely)

Figure out how to reproduce the problem with a small
test case.

2. Hypothesis: analyze; this seems to be the cause
3. Experiment: try to verify the hypothesis. Maybe

modify the code, maybe rerun with specific data,
maybe use a debugger to observe execution

4. Analysis: does the experiment verify the hypothesis?
If so, you’ve discovered the cause and can fix the
problem (bug). If not, go back to step 2 and come up
with a new hypothesis

• Conclusion: do not randomly thrash around – wastes
your time and the bugs will hide in corners where you
won’t find them

UW CSE 374 Spring 2022 5

An execution monitor?

• What would you like to “see inside” and “do to” a
running program?

• Why might all that be helpful?
• What are reasonable ways to debug a program?
• A “debugger” is a tool that lets you stop running

programs, inspect (sometimes set) values, run a
statement or two at a time, etc.
– A MRI or CT scanner for observing executing

code

6UW CSE 374 Spring 2022

Key debugging skills to master

1. How to stop at “interesting” places
– Debug after a crash or segfault (rerun using gdb)
– Use breakpoints to stop during execution

2. How to look around when stopped
– Print values of variables, look at source code,

look up/down call chain

3. How to resume execution
– Incrementally, step at a time; until next

breakpoint; until finished

UW CSE 374 Spring 2022 7

Issues

• Source information for compiled code. (Get compiler help)
• Stopping your program too late to find the problem. (Art)
• Trying to “debug” the wrong algorithm
• Trying to “run the debugger” instead of understanding the

program
• It’s an important tool
• Debugging C vs. Java

– Eliminating crashes does not make your C program
correct

– Debugging Java is “easier” because (some) crashes
and memory errors do not exist

– But programming Java is “easier” for the same reason!

8UW CSE 374 Spring 2022

gdb

• gdb (Gnu debugger) is part of the standard Linux toolchain.
• gdb supports several languages, including C compiled by gcc.
• Modern IDEs have fancy GUI interfaces, which help, but

concepts are the same.
• Compile with debugging information: gcc -g

– Otherwise, gdb can tell you little more than the stack of
function calls.

• Running gdb: gdb executable
– Source files should be in same directory (or use the -d flag).

• At prompt: run args
• Note: You can also inspect core files, which is why they got

saved on older systems after every crash
– (Mostly useful for analyzing crashed programs after-the-fact,

not for systematic debugging. The original use of db.)

9UW CSE 374 Spring 2022

Basic functions

• backtrace
• frame, up, down
• print expression, info args, info locals
Often enough for “crash debugging”
Also often enough for learning how “the compiler does

things” (e.g., stack direction, malloc policy, ...)

10UW CSE 374 Spring 2022

Breakpoints

• break function (or line-number or ...)
• conditional breakpoints (break XXX if expr)

1. to skip a bunch of iterations
2. to do assertion checking

• going forward: continue, next, step, finish
– Some debuggers let you “go backwards”

(typically an illusion)
• Often enough for “binary search debugging”
• Also useful for learning program structure (e.g., when

is some function called)
• Skim the manual for other features.

11UW CSE 374 Spring 2022

A few tricks

• Everyone develops their own “debugging tricks”; here
are a few:
– Always checking why a seg-fault happened

(infinite stack and array-overflow very different)
– Printing pointer values to see how big objects

were.
– “Staring at code” even if it does not crash
– Printing array contents (especially last elements)
– . . .

12UW CSE 374 Spring 2022

Advice

• Understand what the tool provides you
– gdb reference summary on our web, links to gdb docs

• Use it to accomplish a task, for example “I want to know
the call-stack when I get the NULL-pointer dereference”

• Optimize your time developing software
– Think of debugging as a systematic experiment to

discover what’s wrong — not a way to randomly poke
around. Observation: the problem; hypothesis: I think
the cause is …; experiment: use debugger to verify

• Use development environments that have debuggers?
• See also: jdb for Java
• Like any tool, takes extra time at first but designed to save

you time in the long run
– Education is an investment

13UW CSE 374 Spring 2022

gdb summary – running programs

• Be sure to compile with gcc -g
• Open the program with: gdb executable_file
• Start or restart the program: run program_args
• Quit the program: kill
• Quit gdb: quit
• Reference information: help

• Most commands have short abbreviations
• <return> often repeats the last command

– Particularly useful when stepping through code

14UW CSE 374 Spring 2022

gdb summary – looking around

• bt – stack backtrace
• up, down – change current stack frame
• list – display source code (list n, list function_name)
• print expression – evaluate and print expression
• display expression – (re-)evaluate and print

expression every time execution pauses.
– undisplay – remove an expression from this

recurring list.
• info locals – print all locals (but not parameters)
• x (examine) – look at blocks of memory in various

formats
15UW CSE 374 Spring 2022

gdb summary – breakpoints, stepping

• break – set breakpoint. (break function_name, break
linenumber, break file:linenumber)

• info break – print table of currently set breakpoints
• clear – remove breakpoints
• disable/enable – temporarily turn breakpoints off/on

without removing them from the breakpoint table

• continue – resume execution to next breakpoint or end of
program

• step – execute next source line
• next – execute next source line, but treat function calls as

a single statement and don't step into them
• finish – execute to the conclusion of the current function

– How to recover if you meant “next” instead of “step”

16UW CSE 374 Spring 2022

