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Administrivia

• HW4 out now, due Thursday, April 28, 11 pm:
– C code and libraries.
– Some tools: gdb (debugger) and clint.py (style checker).  

gdb demo today.

• Midterm the following Monday, May 2, in class
– Everything up to hw4/basic C
– Closed book, but you can have one 5x8 notecard with any 

hand-written notes you want on both sides
• Will have reference summaries on test as needed
• Free blank notecards after class

– Old exams on web now for studying
– Review Q&A Sunday afternoon, May 1, 2 pm, location tba
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Agenda

• Debuggers, particularly gdb
• Why?

– To learn general features of breakpoint-debugging
– To learn specifics of gdb
– To learn general debugging “survival skills” 

• Skill #1: don’t panic!
• Skill #2: be systematic – have a plan
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How to avoid debugging

• Don’t put bugs in the program!!
• Think before typing – design before coding

– 20 min. of thinking can save 3 hours debugging – good 
tradeoff

• Write down design (comments) as you go
– Functions: declaration+comments should be complete spec
– Significant data: declaration + comments should be 

complete spec
– If someone has to read the code to figure out how to use 

something or understand data structures, comments are bad
– Review/check comments and compare to code as you work  

• Will catch errors before you run the program
• Turn on compiler warnings (-Wall); use assert; get the computer 

to find problems for you.
• But things can still go wrong…
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But bugs happen…

• How to think about debugging: scientific method
1. Observation: something is wrong.  What? (precisely)  

Figure out how to reproduce the problem with a small 
test case.

2. Hypothesis: analyze; this seems to be the cause
3. Experiment: try to verify the hypothesis.  Maybe 

modify the code, maybe rerun with specific data, 
maybe use a debugger to observe execution

4. Analysis: does the experiment verify the hypothesis?  
If so, you’ve discovered the cause and can fix the 
problem (bug).  If not, go back to step 2 and come up 
with a new hypothesis

• Conclusion: do not randomly thrash around – wastes 
your time and the bugs will hide in corners where you 
won’t find them
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An execution monitor?

• What would you like to “see inside” and “do to” a 
running program?

• Why might all that be helpful?
• What are reasonable ways to debug a program?
• A “debugger” is a tool that lets you stop running 

programs, inspect (sometimes set) values, run a 
statement or two at a time, etc.
– A MRI or CT scanner for observing executing 

code
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Key debugging skills to master

1. How to stop at “interesting” places
– Debug after a crash or segfault (rerun using gdb)
– Use breakpoints to stop during execution

2. How to look around when stopped
– Print values of variables, look at source code, 

look up/down call chain

3. How to resume execution
– Incrementally, step at a time; until next 

breakpoint; until finished
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Issues

• Source information for compiled code. (Get compiler help)
• Stopping your program too late to find the problem. (Art)
• Trying to “debug” the wrong algorithm
• Trying to “run the debugger” instead of understanding the 

program
• It’s an important tool
• Debugging C vs. Java

– Eliminating crashes does not make your C program 
correct

– Debugging Java is “easier” because (some) crashes 
and memory errors do not exist

– But programming Java is “easier” for the same reason!
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gdb

• gdb (Gnu debugger) is part of the standard Linux toolchain. 
• gdb supports several languages, including C compiled by gcc.
• Modern IDEs have fancy GUI interfaces, which help, but 

concepts are the same.
• Compile with debugging information: gcc -g

– Otherwise, gdb can tell you little more than the stack of 
function calls.

• Running gdb: gdb executable
– Source files should be in same directory (or use the -d flag).

• At prompt: run args
• Note: You can also inspect core files, which is why they got 

saved on older systems after every crash
– (Mostly useful for analyzing crashed programs after-the-fact, 

not for systematic debugging.  The original use of db.)
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Basic functions

• backtrace
• frame, up, down
• print expression, info args, info locals
Often enough for “crash debugging”
Also often enough for learning how “the compiler does 

things” (e.g., stack direction, malloc policy, ...)
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Breakpoints

• break function (or line-number or ...)
• conditional breakpoints (break XXX if expr)

1. to skip a bunch of iterations
2. to do assertion checking

• going forward: continue, next, step, finish
– Some debuggers let you “go backwards” 

(typically an illusion)
• Often enough for “binary search debugging”
• Also useful for learning program structure (e.g., when 

is some function called)
• Skim the manual for other features.
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A few tricks

• Everyone develops their own “debugging tricks”; here 
are a few:
– Always checking why a seg-fault happened 

(infinite stack and array-overflow very different)
– Printing pointer values to see how big objects 

were.
– “Staring at code” even if it does not crash
– Printing array contents (especially last elements)
– . . .
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Advice

• Understand what the tool provides you
– gdb reference summary on our web, links to gdb docs

• Use it to accomplish a task, for example “I want to know 
the call-stack when I get the NULL-pointer dereference”

• Optimize your time developing software
– Think of debugging as a systematic experiment to 

discover what’s wrong — not a way to randomly poke 
around.  Observation: the problem; hypothesis: I think 
the cause is …; experiment: use debugger to verify

• Use development environments that have debuggers?
• See also: jdb for Java
• Like any tool, takes extra time at first but designed to save 

you time in the long run
– Education is an investment
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gdb summary – running programs

• Be sure to compile with gcc -g
• Open the program with: gdb executable_file
• Start or restart the program: run program_args
• Quit the program: kill
• Quit gdb: quit
• Reference information: help

• Most commands have short abbreviations
• <return> often repeats the last command

– Particularly useful when stepping through code
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gdb summary – looking around

• bt – stack backtrace
• up, down – change current stack frame
• list – display source code (list n, list function_name) 
• print expression – evaluate and print expression
• display expression – (re-)evaluate and print 

expression every time execution pauses.
– undisplay – remove an expression from this 

recurring list.
• info locals – print all locals (but not parameters)
• x (examine) – look at blocks of memory in various 

formats
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gdb summary – breakpoints, stepping

• break – set breakpoint. (break function_name, break 
linenumber, break file:linenumber)

• info break – print table of currently set breakpoints
• clear – remove breakpoints
• disable/enable – temporarily turn breakpoints off/on 

without removing them from the breakpoint table

• continue – resume execution to next breakpoint or end of 
program

• step – execute next source line
• next – execute next source line, but treat function calls as 

a single statement and don't step into them
• finish – execute to the conclusion of the current function

– How to recover if you meant “next” instead of “step”
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