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Administrivia (1)
• HW4 reminders

– (Re-)read the specifications (assignment) 
carefully, particularly after you “think” you’re 
done(!)

– clint: pay attention to most everything. Questions 
about edge cases, odd warnings, etc.?  
Discussion board!

• Watch late days – several people have used up all 
but 1 already – and a couple of people are out(!)
– “remaining late days” posted in canvas – check

• Regrade requests for work returned >1 week will be 
shut off shortly.  If you have questions about 
feedback or grading, ask promptly.
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Administrivia (2)
• Midterm exam next Monday

– Topics – everything up to hw4 (including 
debugging strategies and gdb concepts)
• These slides (malloc) are for next hw and final

– Closed book/notes, except you can have one 5x8 
notecard with any hand-written notes on it that you 
wish
• Will include reference info on exam as needed

– Old exams on web now for review/practice
• Hint: work problems on blank exam(s) first

– Review Q&A Sunday, 2pm, location TBA
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Pointer syntax

• A review (for completeness)
• Declare a variable to have a pointer type:

T * x; or T* x; or T *x; or T*x;
(where T is a type and x is a variable)

• An expression to dereference a pointer:
*x (or more generally *e)

where e is an expression
• C’s designers used the same character on purpose, 

but declarations (create variable) and expressions 
(compute a value) are totally different things
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Heap allocation

• So far, all of our ints, pointers, and arrays, have been 
stack-allocated, which in C has two huge limitations:
– The space is reclaimed when the allocating function 

returns
– The space required must (normally) be a constant 

(only an issue for arrays)
• Heap-allocation has neither limitation
• Comparison: new T(...) in Java does all this:

– Allocate space for a T (exception if out-of-memory)
– Initialize the fields to null or 0
– Call the user-written constructor function
– Return a reference (hey, a pointer!) to the new object

• And the reference has a specific type: T
• In C, these steps are almost all separated
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malloc, part 1

• malloc is “just” a library function: it takes a number, 
heap-allocates (at least) that many bytes and returns 
a pointer to the newly-allocated memory
– Returns NULL on failure
– Does not initialize the memory
– You must cast the result to the pointer type you 

want
– You do not know how much space different values 

need!
• Do not do things like malloc(17) !
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malloc, part 2

• malloc is “always” used in a specific way:
(T*)malloc(e * sizeof(T))

• Returns a pointer to memory large enough to hold an 
array of length e with elements of type T

• It is still not initialized (use a loop)!
– Underused friend: calloc (takes e and sizeof(T) as 

separate arguments, initializes everything to 0)
• malloc returns an untyped pointer (void*); the cast 

(T*) tells C to treat it as a pointer to a block of type T
– If allocation fails (extremely rare, but can happen), 

returns NULL.  Programs must always check.
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Half the battle

• We can now allocate memory of any size and have it “live” 
forever

• For example, we can allocate an array and use it 
indefinitely

• Unfortunately, computers do not have infinite memory so 
“living forever” could be a problem

• Java solution: Conceptually objects live forever, but the 
system has a garbage collector that finds unreachable 
objects and reclaims their space

• C solution: You explicitly free an object’s space by passing 
a pointer to it to the library function free
– Must be a pointer value returned by malloc

• Freeing heap memory correctly is very hard in complex 
software and is the disadvantage of C-style heap-
allocation
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Everybody wants to be free(d once)
int * p = (int*)malloc(sizeof(int));
p = NULL; /* LEAK! */
int * q = (int*)malloc(sizeof(int));
free(q);
free(q); /* HYCSBWK */
int * r = (int*)malloc(sizeof(int));
free(r);
int * s = (int*)malloc(sizeof(int));
*s = 19;
*r = 17; /* HYCSBWK, but maybe *s==17 ?! */

• Problems much worse with functions:
– f returns a pointer; (when) should f’s caller free the pointed-

to object? (i.e., who owns the pointed-to space?)
– g takes two pointers and frees one pointed-to object. Can 

the other pointer be dereferenced?
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The Rules

• For every run-time call to malloc there should be one run-
time call to free

• If you “lose all pointers” to an object, you can’t ever call 
free (a leak)!

• If you “use an object after it’s freed” (or free it twice), you 
used a dangling pointer!

• Note: It’s possible but rare to use up too much memory 
without creating “leaks via no more pointers to an object”

• Interesting side-note: The standard-library must 
“remember” how big the object is (but it won’t tell you)
– We will explore this further…  

later ….
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valgrind

• Ideally there are no memory leaks, dangling pointers, or 
other bugs, but how do we check?

• valgrind program program-arguments
– Runs program with program-arguments
– Catches pointer errors during execution
– At end, prints summary of heap usage, including 

details of any memory leaks at termination
• Option  --leak-check=full  gives more details, use it

• But it really slows down execution
– But still a fantastic diagnostic, debugging tool

• Valgrind has other options/tools but memory check is the 
default and most commonly used
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Processes and the heap

• Recall: a process (running program) has a single 
address space (code, static/global, heap, stack)

• When a program terminates the address space is 
released by the OS
– So any allocated memory is “reclaimed” since it no 

longer exists
• Good practices

– OK to rely on this if appropriate, but…
– Any data structure package that allocates storage 

should normally provide routines to free it so client 
code can release the space if the client wants to
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