
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2022

Lecture 10 – C: the heap and
manual memory management

UW CSE 374 Spring 2022 1

Administrivia (1)
• HW4 reminders

– (Re-)read the specifications (assignment)
carefully, particularly after you “think” you’re
done(!)

– clint: pay attention to most everything. Questions
about edge cases, odd warnings, etc.?
Discussion board!

• Watch late days – several people have used up all
but 1 already – and a couple of people are out(!)
– “remaining late days” posted in canvas – check

• Regrade requests for work returned >1 week will be
shut off shortly. If you have questions about
feedback or grading, ask promptly.

2UW CSE 374 Spring 2022

Administrivia (2)
• Midterm exam next Monday

– Topics – everything up to hw4 (including
debugging strategies and gdb concepts)
• These slides (malloc) are for next hw and final

– Closed book/notes, except you can have one 5x8
notecard with any hand-written notes on it that you
wish
• Will include reference info on exam as needed

– Old exams on web now for review/practice
• Hint: work problems on blank exam(s) first

– Review Q&A Sunday, 2pm, location TBA

3UW CSE 374 Spring 2022

Pointer syntax

• A review (for completeness)
• Declare a variable to have a pointer type:

T * x; or T* x; or T *x; or T*x;
(where T is a type and x is a variable)

• An expression to dereference a pointer:
*x (or more generally *e)

where e is an expression
• C’s designers used the same character on purpose,

but declarations (create variable) and expressions
(compute a value) are totally different things

4UW CSE 374 Spring 2022

Heap allocation

• So far, all of our ints, pointers, and arrays, have been
stack-allocated, which in C has two huge limitations:
– The space is reclaimed when the allocating function

returns
– The space required must (normally) be a constant

(only an issue for arrays)
• Heap-allocation has neither limitation
• Comparison: new T(...) in Java does all this:

– Allocate space for a T (exception if out-of-memory)
– Initialize the fields to null or 0
– Call the user-written constructor function
– Return a reference (hey, a pointer!) to the new object

• And the reference has a specific type: T
• In C, these steps are almost all separated

5UW CSE 374 Spring 2022

malloc, part 1

• malloc is “just” a library function: it takes a number,
heap-allocates (at least) that many bytes and returns
a pointer to the newly-allocated memory
– Returns NULL on failure
– Does not initialize the memory
– You must cast the result to the pointer type you

want
– You do not know how much space different values

need!
• Do not do things like malloc(17) !

6UW CSE 374 Spring 2022

malloc, part 2

• malloc is “always” used in a specific way:
(T*)malloc(e * sizeof(T))

• Returns a pointer to memory large enough to hold an
array of length e with elements of type T

• It is still not initialized (use a loop)!
– Underused friend: calloc (takes e and sizeof(T) as

separate arguments, initializes everything to 0)
• malloc returns an untyped pointer (void*); the cast

(T*) tells C to treat it as a pointer to a block of type T
– If allocation fails (extremely rare, but can happen),

returns NULL. Programs must always check.

7UW CSE 374 Spring 2022

Half the battle

• We can now allocate memory of any size and have it “live”
forever

• For example, we can allocate an array and use it
indefinitely

• Unfortunately, computers do not have infinite memory so
“living forever” could be a problem

• Java solution: Conceptually objects live forever, but the
system has a garbage collector that finds unreachable
objects and reclaims their space

• C solution: You explicitly free an object’s space by passing
a pointer to it to the library function free
– Must be a pointer value returned by malloc

• Freeing heap memory correctly is very hard in complex
software and is the disadvantage of C-style heap-
allocation

8UW CSE 374 Spring 2022

Everybody wants to be free(d once)
int * p = (int*)malloc(sizeof(int));
p = NULL; /* LEAK! */
int * q = (int*)malloc(sizeof(int));
free(q);
free(q); /* HYCSBWK */
int * r = (int*)malloc(sizeof(int));
free(r);
int * s = (int*)malloc(sizeof(int));
*s = 19;
r = 17; / HYCSBWK, but maybe *s==17 ?! */

• Problems much worse with functions:
– f returns a pointer; (when) should f’s caller free the pointed-

to object? (i.e., who owns the pointed-to space?)
– g takes two pointers and frees one pointed-to object. Can

the other pointer be dereferenced?
UW CSE 374 Spring 2022 9

The Rules

• For every run-time call to malloc there should be one run-
time call to free

• If you “lose all pointers” to an object, you can’t ever call
free (a leak)!

• If you “use an object after it’s freed” (or free it twice), you
used a dangling pointer!

• Note: It’s possible but rare to use up too much memory
without creating “leaks via no more pointers to an object”

• Interesting side-note: The standard-library must
“remember” how big the object is (but it won’t tell you)
– We will explore this further…

later ….

10UW CSE 374 Spring 2022

valgrind

• Ideally there are no memory leaks, dangling pointers, or
other bugs, but how do we check?

• valgrind program program-arguments
– Runs program with program-arguments
– Catches pointer errors during execution
– At end, prints summary of heap usage, including

details of any memory leaks at termination
• Option --leak-check=full gives more details, use it

• But it really slows down execution
– But still a fantastic diagnostic, debugging tool

• Valgrind has other options/tools but memory check is the
default and most commonly used

UW CSE 374 Spring 2022 11

Processes and the heap

• Recall: a process (running program) has a single
address space (code, static/global, heap, stack)

• When a program terminates the address space is
released by the OS
– So any allocated memory is “reclaimed” since it no

longer exists
• Good practices

– OK to rely on this if appropriate, but…
– Any data structure package that allocates storage

should normally provide routines to free it so client
code can release the space if the client wants to

12UW CSE 374 Spring 2022

