CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2022

Lecture 9a — C: File I/O
(slides courtesy of CSE 333)

UW CSE 374 Spring 2022

File 1/0O Iin C - a brief introduction

« C’s stdio library defines the notion of a stream

— A way of reading or writing a sequence of characters to
and from a device

— Can be either text or binary; Linux does not distinguish

— |Is buffered by default; the library reads ahead of your
program, and output is buffered before write to device

— Three streams provided by default: stdin, stdout,
stderr
— You can open additional streams to read and write to files

— C streams are manipulated with a FILE* pointer, which
Is defined in <stdio.h>

UW CSE 374 Spring 2022 2

C Stream Functions

Some stream functions defined in <stdio.h>

— See online reference links for details

FILE* fopen (filename, mode);

« Opens a stream to the specified file in specified file access
mode

int fclose(stream) ;
» Closes the specified stream (and file)

size t fwrite(ptr, size, count, stream);

« Writes an array of count elements of size bytes from memory
location ptr to stream

size t fread(ptr, size, count, stream);

* Reads an array of count elements of size bytes from stream
to ptr

UW CSE 374 Spring 2022

C Stream Functions

* Formatted I/O stream functions (more in in stdio.h):

int fprintf (stream, format, ...);

« Writes a formatted C string

e printf (...) isequivalentto fprintf (stdout, ...)
int fscanf (stream, format, ...);

« Reads data and stores data matching the format string

UW CSE 374 Spring 2022

Error Checking/Handling

« Some error functions (complete list in stdio.h):

vold perror (message) ;
» Prints message and error message related to errno to stderr

int ferror (stream);

« Checks if the error indicator associated with the specified
stream is set

vold clearerr (stream);
« Resets error and eof indicators for the specified stream

UW CSE 374 Spring 2022

C Streams Example (in file cp_example.c)

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main (int argc, char** argv) {
FILE *fin, *fout;
char readbuf [READBUFSIZE]; // space for input data

size t readlen;

if (argc !'= 3) {
fprintf (stderr, "usage: ./cp example infile outfile\n");
return EXIT FAILURE; // defined in stdlib.h

// Open the input file

fin = fopen(argv[1l], "rb"); // "rb" -> read, binary mode
if (fin == NULL) {
fprintf (stderr, "%s -- ", argv([l]);

perror ("fopen for read failed");
return EXIT FAILURE;

// next slide’s code

UW CSE 374 Spring 2022

C Streams Example (cont)

int main (int argc, char** argv) {

// previous slide’s code

// Open the output file

fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode
if (fout == NULL) {
fprintf (stderr, "%s -- ", argv[2]);

perror ("fopen for write failed");
return EXIT FAILURE;

// Read from the file, write to fout
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
if (fwrite (readbuf, 1, readlen, fout) < readlen) {
perror ("fwrite failed");
return EXIT FAILURE;

// next slide’s code

UW CSE 374 Spring 2022

C Streams Example (concl)

int main (int argc, char** argv) {

// code from previous 2 slides
// Test to see if we encountered an error while reading
if (ferror (fin)) {

perror ("fread failed");
return EXIT_FAILURE;

fclose (fin);
fclose (fout) ;

return EXIT SUCCESS;

UW CSE 374 Spring 2022

Buffering

« By default, stdio uses buffering for streams:

Data written by fwrite () is copied into a buffer allocated
by stdio inside your process’ address space

* As some point, the buffer will be “drained” into the destination:

When you explicitly call £f£1ush () on the stream (not
needed except for special applications)
When the buffer size is exceeded (often 1024 or 4096 bytes)

For stdout to console, when a newline is written (“line
buffered”) or when some other function tries to read from the
console

When you call fclose () on the stream

When your process exits gracefully (exit () or return from
main ())

UW CSE 374 Spring 2022 9

Buffering

« Input data from disk files (but not keyboard) is also typically
buffered by stdio

— When a file is opened or first read, usually read a disk block
(often 1024 or 4096 bytes) into stdio memory buffer

— As program reads data, stdio copies data from its buffer to
user program as requested

— When no more data available in memory to satisfy the next
user input request, read next block from disk and continue

UW CSE 374 Spring 2022 10

Why Buffer?

« Performance — avoid disk accesses

— Group many small reads

or writes into a single
larger 1/O operation

« Disk Latency = @@
(Jeff Dean from LADIS ’09)

— Actual numbers change
over time, but relative
magnitudes stay similar

« Convenience — nicer API
than the native “read a
block at a time” API

provided by Linux

Numbers Everyone Should Know

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

059 ns
5 ns
7 ns
25 s
100 ns
3,000 ns
20;000 ns
250,000 ns
500,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

UW CSE 374 Spring 2022

11

Controlling Buffering

* Why not buffer?

— Reliability — ensure data is written to device now, not
later (in case power fails, etc.)
— Performance — avoid extra data copying for high-
volume / high-performance jobs
* (No, our CSE 374 programs don'’t really qualify)

« Controlling C’s buffering

— Explicitly disable with setbuf (stream, NULL)

« But potential performance problems if lots of small I/O
operations require actual disk accesses each time

— Use direct Linux read/write system calls
« More complex, harder to use, but avoids user-level buffering

 (but Linux also buffers its own disk accesses for performance,
which can also be controlled if needed)

UW CSE 374 Spring 2022 12

