
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2022

Lecture 9a – C: File I/O
(slides courtesy of CSE 333)

UW CSE 374 Spring 2022 1

File I/O in C - a brief introduction

• C’s stdio library defines the notion of a stream
– A way of reading or writing a sequence of characters to

and from a device
– Can be either text or binary; Linux does not distinguish
– Is buffered by default; the library reads ahead of your

program, and output is buffered before write to device
– Three streams provided by default: stdin, stdout,
stderr

– You can open additional streams to read and write to files
– C streams are manipulated with a FILE* pointer, which

is defined in <stdio.h>

UW CSE 374 Spring 2022 2

C Stream Functions

• Some stream functions defined in <stdio.h>
– See online reference links for details

FILE* fopen(filename, mode);
• Opens a stream to the specified file in specified file access

mode
int fclose(stream);

• Closes the specified stream (and file)

size_t fwrite(ptr, size, count, stream);
• Writes an array of count elements of size bytes from memory

location ptr to stream
size_t fread(ptr, size, count, stream);

• Reads an array of count elements of size bytes from stream
to ptr

UW CSE 374 Spring 2022 3

C Stream Functions

• Formatted I/O stream functions (more in in stdio.h):

int fprintf(stream, format, ...);
• Writes a formatted C string
• printf(...) is equivalent to fprintf(stdout,...)

int fscanf(stream, format, ...);
• Reads data and stores data matching the format string

UW CSE 374 Spring 2022 4

Error Checking/Handling

• Some error functions (complete list in stdio.h):

void perror(message);
• Prints message and error message related to errno to stderr

int ferror(stream);
• Checks if the error indicator associated with the specified

stream is set

void clearerr(stream);
• Resets error and eof indicators for the specified stream

UW CSE 374 Spring 2022 5

C Streams Example (in file cp_example.c)

#include <stdio.h>

#include <stdlib.h>
#include <errno.h>

#define READBUFSIZE 128

int main(int argc, char** argv) {
FILE *fin, *fout;

char readbuf[READBUFSIZE]; // space for input data
size_t readlen;

if (argc != 3) {

fprintf(stderr, "usage: ./cp_example infile outfile\n");
return EXIT_FAILURE; // defined in stdlib.h

}

// Open the input file
fin = fopen(argv[1], "rb"); // "rb" -> read, binary mode
if (fin == NULL) {

fprintf(stderr, "%s -- ", argv[1]);
perror("fopen for read failed");

return EXIT_FAILURE;
}

... // next slide’s code
UW CSE 374 Spring 2022 6

C Streams Example (cont.)

int main(int argc, char** argv) {

... // previous slide’s code

// Open the output file
fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode

if (fout == NULL) {
fprintf(stderr, "%s -- ", argv[2]);

perror("fopen for write failed");
return EXIT_FAILURE;

}

// Read from the file, write to fout
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {

if (fwrite(readbuf, 1, readlen, fout) < readlen) {
perror("fwrite failed");

return EXIT_FAILURE;
}

}

... // next slide’s code
}

UW CSE 374 Spring 2022 7

C Streams Example (concl.)

int main(int argc, char** argv) {

... // code from previous 2 slides

// Test to see if we encountered an error while reading
if (ferror(fin)) {

perror("fread failed");
return EXIT_FAILURE;

}

fclose(fin);
fclose(fout);

return EXIT_SUCCESS;

}

UW CSE 374 Spring 2022 8

Buffering

• By default, stdio uses buffering for streams:
– Data written by fwrite() is copied into a buffer allocated

by stdio inside your process’ address space

• As some point, the buffer will be “drained” into the destination:
– When you explicitly call fflush() on the stream (not

needed except for special applications)
– When the buffer size is exceeded (often 1024 or 4096 bytes)
– For stdout to console, when a newline is written (“line

buffered”) or when some other function tries to read from the
console

– When you call fclose() on the stream
– When your process exits gracefully (exit() or return from
main())

UW CSE 374 Spring 2022 9

Buffering

• Input data from disk files (but not keyboard) is also typically
buffered by stdio

– When a file is opened or first read, usually read a disk block
(often 1024 or 4096 bytes) into stdio memory buffer

– As program reads data, stdio copies data from its buffer to
user program as requested

– When no more data available in memory to satisfy the next
user input request, read next block from disk and continue

UW CSE 374 Spring 2022 10

Why Buffer?
• Performance – avoid disk accesses

– Group many small reads
or writes into a single
larger I/O operation

• Disk Latency = 😱😱😱
(Jeff Dean from LADIS ’09)
– Actual numbers change

over time, but relative
magnitudes stay similar

• Convenience – nicer API
than the native “read a
block at a time” API
provided by Linux

UW CSE 374 Spring 2022 11

Controlling Buffering
• Why not buffer?

– Reliability – ensure data is written to device now, not
later (in case power fails, etc.)

– Performance – avoid extra data copying for high-
volume / high-performance jobs

• (No, our CSE 374 programs don’t really qualify)

• Controlling C’s buffering
– Explicitly disable with setbuf(stream, NULL)

• But potential performance problems if lots of small I/O
operations require actual disk accesses each time

– Use direct Linux read/write system calls
• More complex, harder to use, but avoids user-level buffering
• (but Linux also buffers its own disk accesses for performance,

which can also be controlled if needed)

UW CSE 374 Spring 2022 12

