
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2022

Lecture 9 – C: Locals, lvalues and rvalues, more pointers

UW CSE 374 Spring 2022 1

Administrivia

• HW3 is due Thursday night, 11 pm
– You should plan to get this one done on time so you

have a full week (and maybe a late day) for…
• …HW4: first C program, plus a bit of gdb debugging

– Out Friday morning, due the following Thursday
– Program searches text files for lines containing a string

(basically grep but with literal string matches, no
regular expressions)

– A fair amount to do, but will go well if you work on it
steadily and incrementally one piece at a time

• Likely a potential disaster if you try to do it all at the
last minute

• So get hw3 done by the due date this Thursday J

UW CSE 374 Spring 2022 2

If things are starting to get difficult…

• We’re starting week 4 of the quarter and for most of us, so
far, so good

• But some of us are dealing with unexpected things
(illness, personal situations) and for a lot more of us the
world is still not really back to “normal” (whatever that is)

• If you’re having problems, please reach out to course
staff, your academic advisors, UW Counseling Center,
other resources, …

• Say something if you could use some help, or just need to
talk – don’t bottle it up and hope that it will magically get
better

• Try to stay on schedule – don’t plan in advance to use late
days, etc., and speak up if that’s not working.

UW CSE 374 Spring 2022 3

The story so far…

• The low-level execution model of a process (one address
space)

• Basics of C:
– Language features: functions, pointers, arrays
– Idioms: Array-lengths, strings with ’\0’ terminators
– Control constructs and int guards

• Today, more features:
– Local declarations
– Storage duration and scope
– Left vs. right expressions; more pointers
– Dangling pointers
– Stack arrays and implicit pointers (confusing)

• Later: structs; the heap and manual memory management
4UW CSE 374 Spring 2022

Storage, lifetime, and scope

• At run-time, every variable needs space & has a lifetime
– When is the space allocated and deallocated?

• Every variable has scope
– Where can the variable be used (unless another

variable shadows it)?
• C has several answers (with inconsistent reuse of the

word static)
• Some answers rarely used but understanding storage,

lifetime, and scope is important
• Related: Allocating space is separate from initializing that

space
– Use uninitialized bits? Hopefully crash but who knows?
– Unlike Java, which zeros out objects and complains

about uninitialized locals

UW CSE 374 Spring 2022 5

Standard Terminology for Storage

• In programming languages, data generally is grouped in to
one of three classes depending on its lifetime. Standard
PL terminology:
– Static: allocated when program initialized, lifetime is

entire execution of the program
– Automatic: local variables, parameters, etc. for

functions; allocated when a function is called, deleted
when function returns, lifetime is duration of function
execution

– Dynamic: Allocated and deleted under program control
(new in Java, malloc/free in C)

• C has these storage classes but the terminology is
somewhat confused (particularly because the C static
keyword means several things…)

UW CSE 374 Spring 2022 6

Storage, lifetime, and scope in C

• Global variables allocated before main, deallocated after main.
Scope is entire program
– Usually bad style, kind of like public static Java fields
– But can be OK for truly global data like conversion tables,

physical constants, etc.
• Static global variables like global variables but scope is just that

source file, kind of like private static Java fields
– Related: static functions cannot be called from other files

• Static local variables lifetime like global variables (!) but scope is
just that function, rarely used (We won’t use them)

• Local variables (often called automatic) allocated “when
reached” deallocated “after that block”, scope is that block
– With recursion, multiple copies of same variable (one per

stack frame/function activation)
– Like local variables in Java

UW CSE 374 Spring 2022 7

lvalues vs rvalues

• In intro courses we are usually fairly sloppy about the difference
between the left side of an assignment and the right (e.g.,
different meanings of x in “x=x+1;”). To “really get” C, it helps to
get this straight:
– Law #1: Left-expressions get evaluated to locations

(addresses)
– Law #2: Right-expressions get evaluated to values
– Law #3: Values include numbers and pointers (addresses)

• The key difference is the “rule” for variables:
– As a left-expression, a variable is a location and we are done
– As a right-expression, a variable gets evaluated to its

location’s contents, and then we are done
– Most things do not make sense as left expressions

• Note: This is true in Java too

UW CSE 374 Spring 2022 8

Function arguments

• Storage and scope of arguments is like for local variables
• But initialized by the caller (“copying” the value)
• So assigning to an argument has no affect on the caller
• But assigning to the space pointed-to by an argument

might
void f() { int g(int x) {

int i=17; x = x+1;
int j=g(i); return x+1;
printf("%d %d",i,j); }

}

UW CSE 374 Spring 2022 9

Function arguments

• Storage and scope of arguments is like for local variables
• But initialized by the caller (“copying” the value)
• So assigning to an argument has no affect on the caller
• But assigning to the space pointed-to by an argument

might
void f() { int g(int* p) {

int i=17; *p = (*p) + 1;
int j=g(&i); return (*p) + 1;
printf("%d %d",i,j); }

}

10UW CSE 374 Spring 2022

Function arguments

• Storage and scope of arguments is like for local variables
• But initialized by the caller (“copying” the value)
• So assigning to an argument has no affect on the caller
• But assigning to the space pointed-to by an argument

might
void f() { int g(int* p) {

int i=17; int k = *p;
int j=g(&i); int *q = &k;
printf("%d %d",i,j); *p = *q;

} (*p) = (*q) + 1;
return (*q) + 1;

}
11UW CSE 374 Spring 2022

Pointers to pointers to …

• Any level of pointer makes sense:
– Example: argv, *argv, **argv
– Same example: argv, argv[0], argv[0][0]

• But &(&p) makes no sense (&p is not a left-expression,
the value is an address but the value is in no-particular-
place)

• This makes sense (well, at least it’s legal C):
void f(int x) {

int*p = &x;
int**q = &p;
... can use x, p, *p, q, *q, **q, ...

}
• Note: When playing, you can print pointers (i.e.,

addresses, i.e., locations in memory) with %p (just
numbers in hexadecimal)

UW CSE 374 Spring 2022 12

Dangling pointers

int* f(int x) {
int *p;
if(x) {

int y = 3;
p = &y; /* ok */

} /* ok, but p now dangling */
/* y = 4 does not compile */
p = 7; / could CRASH but probably not */
return p; /* uh-oh, but no crash yet */

}
void g(int *p) { *p = 123; }
void h() {

g(f(7)); /* HOPEFULLY YOU CRASH (but maybe not) */
}

13UW CSE 374 Spring 2022

Arrays and Pointers

• If p has type T* or type T[] :
– *p has type T
– If i is an int, p+i refers to the location of an item of type

T that is i items past p (not +i storage locations unless
each item of type T takes up exactly 1 unit of storage)

– p[i] is defined to mean *(p+i)
– if p is used in an expression (including as a function

argument) it has type T*
• Even if it is declared as having type T[]
• One consequence: array arguments are apparently

“passed by reference” (as a pointer to the actual
array storage), not “by value” (which would mean
copying the entire array value)

– But it’s really a copy of a pointer value, so call-by-value
UW CSE 374 Spring 2022 14

Arrays revisited
• “Implicit array promotion”: a variable of type T[] becomes a variable

of type T* in an expression

void f1(int* p) { *p = 5; }

int* f2() {
int x[3]; /* x on stack */
x[0] = 5;

/* (&x)[0] = 5; wrong */
*x = 5;
*(x+0) = 5;
f1(x);

/* f1(&x); wrong – watch types! */
/* x = &x[2]; wrong – x isn’t really a pointer! */

int *p = &x[2];
return x; /* wrong – dangling pointer – but type correct */

}
15UW CSE 374 Spring 2022

