CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2022
Lecture 9 — C: Locals, Ivalues and rvalues, more pointers

UW CSE 374 Spring 2022 1

Administrivia

« HWS3 is due Thursday night, 11 pm

— You should plan to get this one done on time so you
have a full week (and maybe a late day) for...

e ...HW4: first C program, plus a bit of gdb debugging
— Out Friday morning, due the following Thursday

— Program searches text files for lines containing a string
(basically grep but with literal string matches, no
regular expressions)

— A fair amount to do, but will go well if you work on it
steadily and incrementally one piece at a time

* Likely a potential disaster if you try to do it all at the
last minute

« So get hw3 done by the due date this Thursday ©

UW CSE 374 Spring 2022 2

If things are starting to get difficult...

« We're starting week 4 of the quarter and for most of us, so
far, so good

« But some of us are dealing with unexpected things
(illness, personal situations) and for a lot more of us the
world is still not really back to “normal” (whatever that is)

 If you're having problems, please reach out to course

staff, your academic advisors, UW Counseling Center,
other resources, ...

« Say something if you could use some help, or just need to
talk — don’t bottle it up and hope that it will magically get
better

* Try to stay on schedule — don’t plan in advance to use late
days, etc., and speak up if that's not working.

UW CSE 374 Spring 2022 3

The story so far...

* The low-level execution model of a process (one address
space)

« Basics of C:
— Language features: functions, pointers, arrays
— ldioms: Array-lengths, strings with \O’ terminators
— Control constructs and int guards
« Today, more features:
— Local declarations
— Storage duration and scope
— Left vs. right expressions; more pointers
— Dangling pointers
— Stack arrays and implicit pointers (confusing)
» Later: structs; the heap and manual memory management

UW CSE 374 Spring 2022 4

Storage, lifetime, and scope

At run-time, every variable needs space & has a lifetime
— When is the space allocated and deallocated?
* Every variable has scope

— Where can the variable be used (unless another
variable shadows it)?

* C has several answers (with inconsistent reuse of the
word static)

- Some answers rarely used but understanding storage,
lifetime, and scope is important

« Related: Allocating space is separate from initializing that
space

— Use uninitialized bits? Hopefully crash but who knows?

— Unlike Java, which zeros out objects and complains
about uninitialized locals

UW CSE 374 Spring 2022 5

Standard Terminology for Storage

* In programming languages, data generally is grouped in to
one of three classes depending on its lifetime. Standard
PL terminology:

— Static: allocated when program initialized, lifetime is
entire execution of the program

— Automatic: local variables, parameters, etc. for
functions; allocated when a function is called, deleted
when function returns, lifetime is duration of function
execution

— Dynamic: Allocated and deleted under program control
(new in Java, malloc/free in C)

* C has these storage classes but the terminology is
somewhat confused (particularly because the C static
keyword means several things...)

UW CSE 374 Spring 2022 6

Storage, lifetime, and scope in C

 (Global variables allocated before main, deallocated after main.
Scope is entire program

— Usually bad style, kind of like public static Java fields

— But can be OK for truly global data like conversion tables,
physical constants, etc.

« Static global variables like global variables but scope is just that
source file, kind of like private static Java fields

— Related: static functions cannot be called from other files

« Static local variables lifetime like global variables (!) but scope is
just that function, rarely used (We won’t use them)

Local variables (often called automatic) allocated “when
reached” deallocated “after that block”, scope is that block

— With recursion, multiple copies of same variable (one per
stack frame/function activation)

— Like local variables in Java

UW CSE 374 Spring 2022 7

lvalues vs rvalues

In intro courses we are usually fairly sloppy about the difference
between the left side of an assignment and the right (e.g.,
different meanings of x in “x=x+1;"). To “really get” C, it helps to

get this straight:
— Law #1: Left-expressions get evaluated to locations
(addresses)
— Law #2: Right-expressions get evaluated to values
— Law #3: Values include numbers and pointers (addresses)
The key difference is the “rule” for variables:
— As a left-expression, a variable is a location and we are done

— As aright-expression, a variable gets evaluated to its
location’s contents, and then we are done

— Most things do not make sense as left expressions
Note: This is true in Java too

UW CSE 374 Spring 2022 8

Function arguments

« Storage and scope of arguments is like for local variables
« But initialized by the caller (“copying” the value)
« So assigning to an argument has no affect on the caller

« But assigning to the space pointed-to by an argument
might

void f() { int g(int x) {
int i=17; X = Xx+1;
int j=g(i); return x+1;
printf("%d %d",i,j); }

}

UW CSE 374 Spring 2022

Function arguments

« Storage and scope of arguments is like for local variables
« But initialized by the caller (“copying” the value)
« So assigning to an argument has no affect on the caller

« But assigning to the space pointed-to by an argument
might

void f() { int g(int* p) {
inti=17; p=(p) +1;
int j=g(&i); return (*p) + 1;
printf("%d %d"i,j); }

}

UW CSE 374 Spring 2022 10

Function arguments

« Storage and scope of arguments is like for local variables
« But initialized by the caller (“copying” the value)
« So assigning to an argument has no affect on the caller

« But assigning to the space pointed-to by an argument
might

void f() { int g(int"* p) {
int i=17; int k = *p;
int j=g(&i); int *q = &K;
printf("%d %d",i,); *p =*q;
} (°p) = (fq) + 1;
return (*q) + 1,
}

UW CSE 374 Spring 2022 11

Pointers to pointers to ...

Any level of pointer makes sense:
— Example: argv, *argv, **argv
— Same example: argv, argv[0], argv[0][0]
But &(&p) makes no sense (&p is not a left-expression,

the value is an address but the value is in no-particular-
place)

This makes sense (well, at least it's legal C):
void f(int x) {
Int*p = &x;
int**q = &p;
...canusex, p, *p, g, *q, **q, ...
}
Note: When playing, you can print pointers (i.e.,

addresses, i.e., locations in memory) with %p (Just
numbers in hexademmal)

UW CSE 374 Spring 2022 12

Dangling pointers

int* f(int x) {

int *p;
if(x) {
inty = 3;
p = &y; [* ok */
} /* ok, but p now dangling */
[*y = 4 does not compile */
p="7,; / could CRASH but probably not */
return p; /* uh-oh, but no crash yet */
}
void g(int *p) { *p = 123; }
void h() {

g(f(7)); /* HOPEFULLY YOU CRASH (but maybe not) */
}

UW CSE 374 Spring 2022 13

Arrays and Pointers

« If phastype T* ortype T[] :
— *phastype T
— Ifi is an int, p+i refers to the location of an item of type
T that is i items past p (not +i storage locations unless
each item of type T takes up exactly 1 unit of storage)
— pli] is defined to mean *(p+i)
— if p is used in an expression (including as a function
argument) it has type T*
« Even if it is declared as having type T]]
* One consequence: array arguments are apparently

“passed by reference” (as a pointer to the actual
array storage), not “by value” (which would mean

copying the entire array value)
— But it’s really a copy of a pointer value, so call-by-value

UW CSE 374 Spring 2022 14

Arrays revisited

 “Implicit array promotion™: a variable of type T[| becomes a variable
of type T* in an expression

void f1(int* p) { *p = 5; }

int* f2() {
int x[3]; [* x on stack */
x[0] =
[* (&x)[0] = 5; wrong */
*X = 9;
*(x+0) = 5;
f1(x);
[* £1(&x); wrong — watch types! */
[* x = &x[2]; wrong — x isn’t really a pointer! */
int *p = &x[2];
return x; /* wrong — dangling pointer — but type correct */

}

UW CSE 374 Spring 2022 15

