
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2022

Lecture 8 – C: Miscellanea
Control, Declarations, Preprocessor, printf/scanf

UW CSE 374 Spring 2022 1

The story so far…

• The low-level execution model of a process (one address
space)

• Basics of C:
– Language features: functions, pointers, arrays
– Idioms: Array-lengths, strings as arrays with ’\0’ terminators

• Today – a collection of core C idioms/ideas:
– Control Constructs, ints as booleans
– Declarations & Definitions
– Source file structure
– Two important “sublanguages” used a lot in C

• The preprocessor: runs even before the compiler
– Simple #include and #define for now; more later

• printf/scanf: formatted I/O
– Really just a library though

• Next time: lvalues, rvalues, arrays & pointers; then structs &
memory allocation

2UW CSE 374 Spring 2022

Control constructs

• while, if, for, break, continue, switch: much like Java
• Key difference: No built-in boolean type; use ints (or

pointers)
– Anything but 0 (or NULL) is “true”
– 0 and NULL are “false”
– C99 did add a bool library header but not widely

used (particularly in old code)
• goto much maligned, but makes sense for some

tasks (more general than Java’s labeled break)
• Gotcha: switch cases fall-through unless there is an

explicit transfer (typically a break), just like Java

3UW CSE 374 Spring 2022

Declarations and Definitions (1)

• C makes a careful distinction between these two
• Declaration: introduces a name and describes its

properties (type, # parameters, etc), but does not
create it
– ex. Function prototype: int twice(int x);
– also works (not as good style?): int twice(int);

• Definition: the actual thing itself
– ex. Function implementation:

int twice(int x) { return 2*x; }

4UW CSE 374 Spring 2022

Declarations and Definitions (2)

• An item may be declared as many times as needed
– although normally at most once per scope or file

(i.e., can’t declare the same name twice in a
scope)

– Declarations of shared things are often #included
(read) from header files (e.g., stdio.h)

• An item must be defined exactly once
– e,g., there must be a single definition of each

function in only one file no matter how many files
contain a declaration of it (or #include a
declaration) or actually use it

5UW CSE 374 Spring 2022

Forward References

• No forward references allowed:
– A function must be defined or declared in a source

file before it is used. (Lying: “implicit declaration”
warnings, return type assumed int, ...)

– Linker error if something is used but not defined in
some file somewhere (including main)

Use -c to compile file but not link to others (more later)

– To write mutually recursive functions, you just
need a (forward) declaration

UW CSE 374 Spring 2022 6

Forward reference problem

• Code:
int main(int argc, char** argv) {
int x = 10;
int y = square(x);
printf("%d^2 = %d\n", x, y);

}
// return x^2
int square(int x) {
return x*x;

}
• But when compiler sees square(x) in main, it hasn’t

seen a declaration of sumTo yet!
UW CSE 374 Spring 2022 7

Forward reference fix(?)

• Code:
// return x^2
int square(int x) {
return x*x;

}
int main(int argc, char** argv) {
int x = 10;
int y = square(x);
printf("%d^2 = %d\n", x, y);

}
• Reorder the code

– But now code order depends on “who calls what” – not
good

– And what if function a calls b that recursively calls a, …
UW CSE 374 Spring 2022 8

Forward reference actual fix

• Code:
// return x^2
int square(int x);

int main(int argc, char** argv) {
int x = 10;
int y = square(x);
printf("%d^2 = %d\n", x, y);

}

int square(int x) {
return x*x;

}

UW CSE 374 Spring 2022 9

function declaration
(with specification

comments)

call ok – declaration
includes needed info

function definition

Some (more) glitches

• Declarations must precede statements in a “block” in
classic C
– But any statement can be a block, so use { … } if

you need to
– Or use -std=c17 (or c99, c11) gcc compiler option

to relax this restriction

UW CSE 374 Spring 2022 10

Some (more) glitches

• Array variables in code must have a constant size
– So the compiler knows how much space to

allocate
– (C99 has an extension to relax this – rarely used

and now considered bad practice)
– Arrays whose size depends on runtime

information are allocated on the heap (next class)
– Large arrays are best allocated on the heap also,

even if constant size, although not required

UW CSE 374 Spring 2022 11

More gotchas

• Declarations in C are funky:
– You can put multiple declarations on one line, e.g.,

int x, y; or int x=0, y; or int x, y=0;, or ...
– But int *x, y; means int *x; int y; – you usually

mean (want) int *x, *y;
• “int *” isn’t actually a type – the * is associated

with the individual variables!
– Common style rule: one declaration per line

(clarity, safety, easier to place comments, always
do this)”

int * x;
int * y;

UW CSE 374 Spring 2022 12

More gotchas

• Variables holding arrays have super-confusing (but
convenient) rules…
– Array types in function arguments are pointers(!)

• But arrays are not all allocated on the heap (as
with new in Java) – can be local variables on
stack

– Referring to an array name doesn’t mean what
you think (!)
• “implicit array promotion” (later)
• No array copy assignment

– Can only copy an array one element at a time

UW CSE 374 Spring 2022 13

The preprocessor

• Rewrites your .c file before the compiler gets at the
code
– Lines starting with # tell it what to do

• Can do crazy things (please don’t); uncrazy things
are:
1.Including contents of header files (now)
2.Defining constants (now) and parameterized

macros (textual-replacements) (later)
3.Conditional compilation (later)

14UW CSE 374 Spring 2022

File inclusion

#include <foo.h>
• Search for file foo.h in “system include directories” (on

Linux /usr/include and subdirs) for foo.h and include its
preprocessed contents (recursion!) at this place
– Typically lots of nested includes, so result is a mess

nobody looks at (use gcc -E -P if you want a look!)
– Idea is simple: e.g., declaration for fgets is in stdio.h

(use man for what header file to include)
• #include "foo.h" the same but first look in current directory

– How you break your program into smaller files and still
make calls to functions other files (more later)

• gcc -I dir1 -I dir2 ... look in these directories for header
files first (keeps paths out of your code files) – we
probably won’t need to use this

15UW CSE 374 Spring 2022

Simple macros & symbolic constants
#define APROX_PI 3.14 // capitals a convention to avoid problems
#define DEBUG_LEVEL 1
#define NULL 0 // already in standard library

• Replace all matching tokens in the rest of the file.
– Knows where “words” (tokens) start and end (unlike sed)
– Has no notion of scope (unlike C compiler)
– (Rare: can shadow with another #define or use #undef)

#define foo 17
void f() {

int food = foo; // becomes int food = 17; (ok)
int foo = 9+foo+foo; // becomes int 17 = 9+17+17; (nonsense)

}

16UW CSE 374 Spring 2022

Typical file layout
• Not a formal rule, but good conventional style

// includes for functions & types defined elsewhere
#include <stdio.h>
#include “localstuff.h“

// symbolic constants
#define MAGIC 42

// global variables (if any)
static int days_per_month[] = { 31, 28, 31, 30, …};

// function prototypes (to handle “declare before use”)
void some_later_function(char, int);

// function definitions
void do_this() { … }
char * return_that(char s[], int n) { … }
void some_later_function(char c, int n) { … }
int main(int argc, char ** argv) { … }

17UW CSE 374 Spring 2022

printf and scanf

• “Just” two library functions in the standard library
– Prototypes (declarations) in <stdio.h>

• Example: printf("%s: %d %g\n", p, y+9, 3.0)
• They can take any number of arguments

– You can define functions like this too, but it is
rarely useful, arguments are usually not checked
and writing the function definition is a pain
• Writing these not covered in this course

• The “f” in printf is for “format” – crazy characters in
the format string control formatting

18UW CSE 374 Spring 2022

The rules

• To avoid HYCSBWK*:
– Number of arguments better match number of %
– Corresponding arguments better have the right types

(%d, int; %f, float; %e, float (prints scientific); %s, \0-
terminated char*; … (look them up))

– Compiler might check, but not guaranteed
• For scanf, arguments must be pointers to the right type of

thing (reads input and assigns to the variables)
– So int* for %d, but still char* for %s (not char**)

int n; char *s;
…

scanf(“%d %s”, &n, s);

*Hopefully You Crash Soon But Who Knows…

19UW CSE 374 Spring 2022

More funny characters

• Between the % and the letter (e.g., d) can be other
things that control formatting (look them up; we all
do)
– Padding (width) %12d %012d
– Precision . . .
– Left/right justification . . .

• Know what is possible; know that other people’s code
may look funny

20UW CSE 374 Spring 2022

More on scanf

• Check for errors (scanf returns number of % sucessfully
matched)
– maybe the input does not match the text
– maybe some “number” in the input does not parse as a

number
• Always bound your strings

– Or some external data could lead to arbitrary behavior
• (common source of viruses; input a long string

containing evil code)
– Remember there must be room for the \0
– %s reads up to the next whitespace

Example: scanf("%d:%d:%d", &hour, &minutes, &seconds);
Example: scanf("%20s", buf)

(better have room for ³20 characters)

21UW CSE 374 Spring 2022

