CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2022
Lecture 7 — Introduction to C: The C Level of Abstraction

UW CSE 374 Spring 2022 1

Welcome to C

Compared to Java, in rough order of importance
— Lower level (less for compiler to do)
— Unsafe (wrong programs might do anything)
— Procedural programming — not “object-oriented”
— “Standard library” is much smaller
— Many similar control constructs (loops, ifs, ...)
— Many syntactic similarities (operators, types, ...)

A different world-view and much more to keep track
of; Java-like thinking can get you in trouble

UW CSE 374 Spring 2022

Our plan

A semi-nontraditional way to learn C:
« Learn how C programs run on typical x86-64 machines
— Not (totally) promised by C’s definition

— You do not need to “reason in terms of the
implementation” when you follow the rules

— But it does help to know this model
 To remember why C has the rules it does
* To debug incorrect programs
« Learn some C basics (including “Hello World!”)
« Learn what C is (still) used for
« Learn more about the language and good idioms

UW CSE 374 Spring 2022

Some references

- The C Programming Language, Kernighan & Ritchie

. ° ‘K&R"is a classic, one that every programmer
ORI must read. A bit dated now (doesn’t include C99,

C11, or C17 extensions), but the primary source

Essential C, Stanford CS lib,
http://cslibrary.stanford.edu/101/EssentialC.pdf

Good short introduction to the language — link on CSE
374 home page

cplusplus.com (reference site also linked from 374
home page)
» Good current reference for standard library

UW CSE 374 Spring 2022 4

Why C?

« Small language (not very many features) — relatively easy
to understand and implement efficiently

* Provides low-level control over the computer when
needed, closer to assembly (machine) language

— But still possible to write reasonably portable code
« Still used in:

— Embedded programming

— Systems programming

— High-performance code

« And for CSE 374: learning to program in C will give you
better insight into how computers work and how software
interacts with the machine

UW CSE 374 Spring 2022

Address space

Simple model of a running process (provided by the OS):
» There is one address space (an array of bytes)

Most common size today for a typical machine is 254 or 232
For most of what we do it doesn’t matter

264 or 232 per process is way more memory than you have,
but OS maintains illusion that all processes have this much
even if they don’t

“Subscripting” this array takes 64 (or 32) bits
Something’s address is its position in this array

Trying to read a not-used part of the array may cause a
“segmentation fault” (immediate crash)

» All data and code for the process are in this address space

Code and data are bits; program “remembers” what is where
O/S also lets you read/write files (stdin, stdout, stderr, etc.)

UW CSE 374 Spring 2022 6

Address-space layout

« The following can be different on different systems, but it's one
way to understand how C is implemented (and is typical):

code | globals| heap — «— stack

* Soin one array of 8-bit bytes we have:
— Code instructions (typically immutable)

— Space for global variables (mutable and immutable) (like
Java’s static fields)

— A heap for other data (like objects returned by Java’'s new)
— Unused portions; access causes a “seg-fault”

— A call-stack holding local variables and code addresses of
active functions

 ints typically occupy 4 bytes (32 bits); pointers 4 or 8 (32 or 64)
depending on underlying processor/OS (64 on our machines)

UW CSE 374 Spring 2022

The stack

« The call-stack (or just stack) has one “part” or “stack
frame” (compiler folks call it an activation record) for
each active function (cf. Java method) that has not
yet returned

* |t holds:
— Room for local variables and parameters

— The return address (index into code for what to
execute after the function is done)

— Other per-call data needed by the underlying
Implementation

UW CSE 374 Spring 2022

What could go wrong?

« The programmer has to keep the bits straight even though

C deals in terms of variables, functions, data structures,
etc. (not bits)

— If arr is an array of 10 elements, arr[30] accesses some
other thing

— Storing 8675309 where a return address should be
makes a function return start executing stuff that may
not be code

« Correct C programs can’t do these things, but nobody is
perfect

« On the plus side, there is no “unnecessary overhead” like
keeping array lengths around and checking them!

« Okay,timetoseeC...

UW CSE 374 Spring 2022 9

Hello, World!

« Code:
#include<stdio.h>
int main(int argc, char**argv) {
printf("Hello, World!\n");
return O;
}
— Compiling: gcc -0 hello hello.c
» (normally add -Wall -g -std=c17)
— Running: ./hello

* Intuitively: main gets called with the command-line args and the
program exits when it returns

« But there is a lot going on in terms of what the language
constructs mean, what the compiler does, and what happens

when the program runs
* We will focus mostly on the language

UW CSE 374 Spring 2022

10

Quick explanation

#include<stdio.h>

int main(int argc, char**argv) {
printf("Hello, World!\n");
return O;

}

« #include finds the file stdio.h (from where?) and includes its
entire contents (stdio.h describes printf, stdout, and more)

« A function definition is much like a Java method (return type,
name, arguments with types, braces, body); but it is not part of a
class and there are no built-in objects or “this”

* Anintis like in Java, but its size depends on the compiler (it is
32 bits on most mainstream Linux machines, even 64-bit ones)

* main is a special function name; every full program has one
« char*is along story...

UW CSE 374 Spring 2022 11

Second version

#include<stdio.h>
int main(int argc, char**argv) {
char* greeting = “Hello, World!”;
printf("The message is: %s\n", greeting);
return 0O;
}
« This time we have a variable that references the “string”

« printf can have multiple arguments — first is the format string, %s
is a format code — insert the string value that is the next

argument in the output as the first string is printed

« But greeting is not really a “string” — it is a pointer to a location in
memory holding an array of characters with a \0’ byte at the end

— C doesn’t really have strings, but the libraries can treat
arrays of characters with a \O byte at the end as “strings”

UW CSE 374 Spring 2022 12

Second version:
Memory diagram while printf is active

#include<stdio.h>
int main(int argc, char**argv) {

char* greeting = “Hello, World!”;
printf("The message is: %s\n", greeting);

return O;
}

stack frame for main

argc

argv

greeting |e4—

stack frame for printf

} more on argc/argv next...

Hello, World!\O

-

d

" The message is:

$s\n\0

UW CSE 374 Spring 2022

13

Rest of the story

#include<stdio.h>

int main(int argc, char**argv) {
char* greeting = “Hello, World!”;
printf("The message is: %s\n", greeting);
return O;

}

« printf is a function taking a string (a char*) (and often additional
arguments, which are formatted according to codes in the string)

« "Hello, World!" evaluates to a pointer to a global, immutable array
of 14 characters (including the trailing \Q’)

* ‘\n’ in the printf format string is one character — a newline

« printf writes its output to stdout, which is a global variable of type
FILE* defined in stdio.h

— How this gets hooked up to the screen (or somewhere else) is
the library’s (nontrivial) problem

* Return value from main is program’s exit code (caller can check,
e.g., shell's $7?)
UW CSE 374 Spring 2022 14

New program: print arguments

#include <stdio.h>
int main(int argc, char ** argv) {
int k;
printf("argc = %d\n", argc);
for (k = 0; k < argc; k++)
printf("argv[%d] = %s\n", k, argv[k]);
return O;

}

somewhere else in memory
(program’s static data area)

|
|
|

stack frame for main when we i

run ./printargs one 2 iii | ./printargs\0
i /

argc 4 |

' o o one\0
|
| e * 2\0
|
|
|

UW CSE 374 Spring 2022

15

Pointers

Think address, i.e., an index into the address-space array
If argv is a pointer, then *argv returns the pointed-to value
So does argv[0]

And if argv points to an array of 2 values, then argv[1]
returns the second one (and so does *(argv+1) but the +
here is funny)

People like to say “arrays and pointers are the same thing
in C”. This is sloppy talking, but people say it anyway.

Type syntax: T* describes either
— NULL (seg-fault if you dereference it)

— A pointer holding the address of some number of
contiguous values of type T

How many? You have to know somehow; no length
primitive
UW CSE 374 Spring 2022 16

int main(int argc, char**argv)

Pointers, continued

So reading right to left: argv (of type char**) holds a
pointer to (one or more) pointer(s) to (one or more) char(s)

Fact #1 about main: argv holds a pointer to j pointers to
(one or more) char(s) where argc holds |

Common idiom: array lengths as other arguments

Fact #2 about main: For 0 <i <j where argc holds j, argv[i]
is an array of char(s) with last element equal to the
character '\O’ (a zero byte, which is not the char ’0’)

Very common idiom: pointers to char arrays ending with
\O’ are called strings. The standard library and language
rely on this idiom

[Let’s draw a picture of “memory” showing argv/argc.]

UW CSE 374 Spring 2022 17

New program: print arguments

#include <stdio.h>
int main(int argc, char ** argv) {
int k;
printf("argc = %d\n", argc);
for (k = 0; k < argc; k++)
printf("argv[%d] = %s\n", k, argv[k]);
return O;

}

somewhere else in memory
(program’s static data area)

|
|
|

stack frame for main when we i

run ./printargs one 2 iii | ./printargs\0
i /

argc 4 |

' o o one\0
|
| e * 2\0
|
|
|

UW CSE 374 Spring 2022

18

But wait, there's more!

Many variations that we will explore as time permits,
starting with the next homework

— Accessing program command-line arguments (argc
and argv) [done!]

— Other I/O functions (fprintf, fputs, fgets, fopen, ...)
— Program exit values
— Strings — much ado about strings

« Strings as arrays of characters (local and allocated
on the heap)

« Updating strings, buffer overflow, \0’
 String library (<string.h>)
— And more (structs, dynamic memory, ...)

UW CSE 374 Spring 2022

19

Advice

« Start reading K&R (C Programming Language) or
your other favorite C book to get a view of how things
are intended to work

« Use web/books to look up facts (“what’s the C

7 13

function to compare strings”, “how do | format an
integer for output in printf”)

— C/C++ reference link on 374 web is a good start

« Try stuff — write little programs, experiment
— Need to write/run code as well as read about it!

UW CSE 374 Spring 2022 20

