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News

• HW1 due Thursday night 11 pm (not 11:59)
– Glitch discovered over the weekend: on cancun, 

/etc/passwd doesn’t necessarily contain all user 
names.  To answer that question in hw1, just give the 
command that would work if the username were there.

• Office hour schedule on the calendar now and checkin / 
queue tools linked to resources web page.

• Be sure to keep exploring the Linux Pocket Guide and 
reading manual pages (either using man command in 
Linux or web links on CSE 374 web resource page)
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Where we are

• We understand most of the bash shell and its 
“programming language”. Final pieces we’ll consider:
– Shell variables

• Defining your own
• Built-in meanings
• Exporting

– Arithmetic
– For loops

• End with:
– A long list of gotchas (some bash-specific; some 

common to shells)
– Why long shell scripts are a bad idea, etc.
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Shell variables

• We already know a shell has state: current working directory, 
streams, users, aliases, history.

• Its state also includes shell variables that hold strings.
– Always strings even if they are “123” – but you can do math

• Features:
– Change variables’ values: foo=blah
– Add new variables: foo=blah or foo=
– Use variable: ${foo}    (braces sometimes optional)
– Remove variables: unset foo
– See what variables “are set”: set

• Omitted feature: Functions and local variables   (see manual)
• Roughly “all variables are global (visible everywhere)”
• Only assignment is similar to mainstream “real” programming 

languages
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Why variables?

• Variables are useful in scripts, just like in “normal” 
programming.

• “Special” variables affect shell operation. 3 most (?) 
common:
– PATH
– PS1
– HOME

• Some variables make sense only when the shell is 
reading from a script:
– $#, $n (where n is an integer), $@, $*, $?
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Export

• If a shell runs another program (perhaps a bash script), does the 
other program “see the current variables that are set”?
– i.e., are the shell variables part of the initial environment of 

the new program?
• It depends.

– export foo – yes it will see value of foo
– export -n foo – no it will not see value of foo
– Default is no

• If the other program sets an exported variable, does the outer 
shell see the change?

• No.
– Somewhat like “call by value” parameters in conventional 

languages
– Remember, each new program (and shell) is launched as a 

separate process with its own state, environment, etc.
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Arithmetic

• Variables are strings, so k=$i+$j is not addition
• But ((k=$i+$j)) is (and in fact the $ is optional here)
• So is  let k="$i + $j”
• The shell converts the strings to numbers, silently 

using 0 as necessary

7UW CSE 374 Spring 2022



For loops

• Syntax:
for v in w1 w2 ... wn

do
body

done
• Execute body n times, with v set to wi on ith

iteration(Afterwards, v=wn)
• Why so convenient?

– Use a filename pattern after in
– Use list of argument strings after in: "$@”

• Not “$*” – that doesn’t handle arguments with 
embedded blanks the way you (usually) want
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Quoting

• Does x=* set x to string-holding-asterisk or string-holding-
all-filenames?

• If $x is *, does ls $x list all-files or file named asterisk?
• Are variables expanded in double-quotes? single-quotes?
• Could consult the manual, but honestly it’s easier to start a 

shell and experiment. For example:
x="*"
echo x
echo $x
echo "$x"    (Double quotes suppress some substitutions)
echo ’$x’     (Single quotes suppress all substitutions)
...
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Gotchas: A very partial list

1. Typo in variable name on left: create new variable 
oops=7

2. Typo in variable use: get empty string – ls $oops
3. Use same variable name again: clobber other use 

HISTFILE=uhoh
4. Spaces in variables: use double-quotes if you mean 

“one word”
5. Non-number used as number: end up with 0
6. set f=blah: apparently does nothing (assignment in 

csh)
7. Many, many more…
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Shell programming revisited

• How do Java programming and shell programming 
compare?

• The shell:
– “shorter”
– convenient file-access, file-tests, program-execution, 

pipes
– crazy quoting rules and syntax
– also interactive

• Java:
– none of the previous gotchas
– local variables, modularity, typechecking, array-

checking, . . .
– real data structures, libraries, regular syntax

• Rough rule of thumb: Don’t write shell scripts over 200 
lines?
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Treatment of strings

• Suppose foo is a variable that holds the string hello

• Moral: In Java, variable-uses are easier than string-
constants

• Opposite in Bash
• Both biased toward common use

Java Bash
Use variable (get “hello”) foo $foo
The string foo “foo” foo
Assign variable foo = hi foo=hi
Concatenation foo + “oo” ${foo}oo
Convert to number library call silent and implicit
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More on shell programming

• Metapoint: Computer scientists automate and end up 
accidentally inventing (bad) programming languages. It’s 
like using a screwdriver as a pry bar.

• HW3 in part, will be near the limits of what seems 
reasonable to do with a shell script (and we’ll end up 
cutting corners as a result)

• There are plenty of attempts to get “the best of both 
worlds” in a scripting language: Perl, Python, Ruby, . . .

• Personal opinion: it raises the limit to 1000 or 10000 lines? 
Gets you hooked on short programs.

• Picking the bash shell was a conscious decision to 
emphasize the interactive side and see “how bad 
programming can get”.

• Next: Regular expressions, grep, sed, others.
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Bottom line

• Never do something manually if writing a script would 
save you time

• Never write a script if you need a large, robust piece 
of software

• Some programming languages try to give the “best of 
both worlds” – you now have seen two extremes that 
don’t (Java and bash)
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