
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2022

Lecture 4 – Shell Variables, More Shell Scripts

UW CSE 374 Spring 2022 1

News

• HW1 due Thursday night 11 pm (not 11:59)
– Glitch discovered over the weekend: on cancun,

/etc/passwd doesn’t necessarily contain all user
names. To answer that question in hw1, just give the
command that would work if the username were there.

• Office hour schedule on the calendar now and checkin /
queue tools linked to resources web page.

• Be sure to keep exploring the Linux Pocket Guide and
reading manual pages (either using man command in
Linux or web links on CSE 374 web resource page)

UW CSE 374 Spring 2022 2

Where we are

• We understand most of the bash shell and its
“programming language”. Final pieces we’ll consider:
– Shell variables

• Defining your own
• Built-in meanings
• Exporting

– Arithmetic
– For loops

• End with:
– A long list of gotchas (some bash-specific; some

common to shells)
– Why long shell scripts are a bad idea, etc.

3UW CSE 374 Spring 2022

Shell variables

• We already know a shell has state: current working directory,
streams, users, aliases, history.

• Its state also includes shell variables that hold strings.
– Always strings even if they are “123” – but you can do math

• Features:
– Change variables’ values: foo=blah
– Add new variables: foo=blah or foo=
– Use variable: ${foo} (braces sometimes optional)
– Remove variables: unset foo
– See what variables “are set”: set

• Omitted feature: Functions and local variables (see manual)
• Roughly “all variables are global (visible everywhere)”
• Only assignment is similar to mainstream “real” programming

languages

4UW CSE 374 Spring 2022

Why variables?

• Variables are useful in scripts, just like in “normal”
programming.

• “Special” variables affect shell operation. 3 most (?)
common:
– PATH
– PS1
– HOME

• Some variables make sense only when the shell is
reading from a script:
– $#, $n (where n is an integer), $@, $*, $?

5UW CSE 374 Spring 2022

Export

• If a shell runs another program (perhaps a bash script), does the
other program “see the current variables that are set”?
– i.e., are the shell variables part of the initial environment of

the new program?
• It depends.

– export foo – yes it will see value of foo
– export -n foo – no it will not see value of foo
– Default is no

• If the other program sets an exported variable, does the outer
shell see the change?

• No.
– Somewhat like “call by value” parameters in conventional

languages
– Remember, each new program (and shell) is launched as a

separate process with its own state, environment, etc.
6UW CSE 374 Spring 2022

Arithmetic

• Variables are strings, so k=$i+$j is not addition
• But ((k=$i+$j)) is (and in fact the $ is optional here)
• So is let k="$i + $j”
• The shell converts the strings to numbers, silently

using 0 as necessary

7UW CSE 374 Spring 2022

For loops

• Syntax:
for v in w1 w2 ... wn

do
body

done
• Execute body n times, with v set to wi on ith

iteration(Afterwards, v=wn)
• Why so convenient?

– Use a filename pattern after in
– Use list of argument strings after in: "$@”

• Not “$*” – that doesn’t handle arguments with
embedded blanks the way you (usually) want

8UW CSE 374 Spring 2022

Quoting

• Does x=* set x to string-holding-asterisk or string-holding-
all-filenames?

• If $x is *, does ls $x list all-files or file named asterisk?
• Are variables expanded in double-quotes? single-quotes?
• Could consult the manual, but honestly it’s easier to start a

shell and experiment. For example:
x="*"
echo x
echo $x
echo "$x" (Double quotes suppress some substitutions)
echo ’$x’ (Single quotes suppress all substitutions)
...

9UW CSE 374 Spring 2022

Gotchas: A very partial list

1. Typo in variable name on left: create new variable
oops=7

2. Typo in variable use: get empty string – ls $oops
3. Use same variable name again: clobber other use

HISTFILE=uhoh
4. Spaces in variables: use double-quotes if you mean

“one word”
5. Non-number used as number: end up with 0
6. set f=blah: apparently does nothing (assignment in

csh)
7. Many, many more…

UW CSE 374 Spring 2022 10

Shell programming revisited

• How do Java programming and shell programming
compare?

• The shell:
– “shorter”
– convenient file-access, file-tests, program-execution,

pipes
– crazy quoting rules and syntax
– also interactive

• Java:
– none of the previous gotchas
– local variables, modularity, typechecking, array-

checking, . . .
– real data structures, libraries, regular syntax

• Rough rule of thumb: Don’t write shell scripts over 200
lines?

11UW CSE 374 Spring 2022

Treatment of strings

• Suppose foo is a variable that holds the string hello

• Moral: In Java, variable-uses are easier than string-
constants

• Opposite in Bash
• Both biased toward common use

Java Bash
Use variable (get “hello”) foo $foo
The string foo “foo” foo
Assign variable foo = hi foo=hi
Concatenation foo + “oo” ${foo}oo
Convert to number library call silent and implicit

12UW CSE 374 Spring 2022

More on shell programming

• Metapoint: Computer scientists automate and end up
accidentally inventing (bad) programming languages. It’s
like using a screwdriver as a pry bar.

• HW3 in part, will be near the limits of what seems
reasonable to do with a shell script (and we’ll end up
cutting corners as a result)

• There are plenty of attempts to get “the best of both
worlds” in a scripting language: Perl, Python, Ruby, . . .

• Personal opinion: it raises the limit to 1000 or 10000 lines?
Gets you hooked on short programs.

• Picking the bash shell was a conscious decision to
emphasize the interactive side and see “how bad
programming can get”.

• Next: Regular expressions, grep, sed, others.
UW CSE 374 Spring 2022 13

Bottom line

• Never do something manually if writing a script would
save you time

• Never write a script if you need a large, robust piece
of software

• Some programming languages try to give the “best of
both worlds” – you now have seen two extremes that
don’t (Java and bash)

14UW CSE 374 Spring 2022

