
 CSE 374 Midterm Exam 5/2/22  

  Page 1 of 13 

 
 

 
Name ____________________________________________ UW Id # _____________ 
    (please print legibly) 
 
There are 8 questions worth a total of 100 points.  Please budget your time so you get to 
all of the questions.  Keep your answers brief and to the point. 
 
The exam is closed book, closed notes, closed electronics, closed telepathy, etc., except 
that you may have one 5x8 card with any hand-written notes you wish on both sides. 
 
Many of the questions have short solutions, even if the question is somewhat long.  Don’t 
be alarmed. 
 
If you don’t remember the exact syntax of some command or the format of a command’s 
output, make the best attempt you can.  We will make allowances when grading. 
 
There is a blank page at the end with extra space for answers if you need more room. 
 
The last page of the exam contains reference information that may be useful while 
answering some of the questions.  Do not write on this page – it will not be examined 
while grading.  You should remove this page from the exam and return it for recycling 
when you are done. 
 
Relax, you are here to learn. 
 
Please wait to turn the page until everyone is told to begin. 
 
Score _________________ / 100 
 
1. ______ / 12 

2. ______ / 6 

3. ______ / 15 

4. ______ / 12 

5. ______ / 14 

6. ______ / 18 

7. ______ / 20 

8. ______ / 3

  



 CSE 374 Midterm Exam 5/2/22  

  Page 2 of 13 

Question 1. (12 points, 3 each)  Linux commands and shell expansion. 
 
Suppose that the current directory contains the following files 
 
 foo.c   cow.story  cow.cat  cow.cc 
 tickle.c  dog.cow  story.txt  cow.h 
 
What output is produced when each of the following bash commands is executed in this 
directory? 
 

(a) echo *c 
 
 
 
 
 

(b) echo *.c 
 
 
 
 
 
 

(c) echo *.c* 
 
 
 
 
 
 

(d) echo *.*.c 
  



 CSE 374 Midterm Exam 5/2/22  

  Page 3 of 13 

Question 2. (6 points) Aliases.  To compile the code for hw4, we used this command: 
 
 gcc -Wall -g -std=c17 -o hw4 hw4.c 
 
That gets tediously very quickly.  We’d like to save some typing by defining an alias 
compile that allows us to do the same thing but without having to type as much. 
 
Define a bash alias compile so that typing 
 
 compile -o hw4 hw4.c 
 
does exactly the same thing as the original gcc command given above.  (Of course, 
different arguments could be given after compile, not just  -o hw4 hw4.c, so the 
alias should execute gcc with the required options and whatever other arguments are 
present.) 
 
(Hint: the answer is quite short – you will not need nearly this much space to write it) 
 
 
  



 CSE 374 Midterm Exam 5/2/22  

  Page 4 of 13 

Question 3.  (15 points)   (A little scripting)  The alias from the previous problem is 
better than having to type an entire gcc command, but we could do even better with a 
shell script. For this problem write a bash script that compiles programs with gcc as 
follows:  If the script is stored in an executable file named comp, then the command 
 

 ./comp foo 
 

should execute the command gcc -Wall -g -std=c17 -o foo foo.c.  If there 
are two arguments naming the source file and compiled file, in that order, then  
 

 ./comp bar.c foo 
 

should execute the command gcc -Wall -g -std=c17 -o foo bar.c.  If the 
script does not have exactly one or two arguments, then it should print a suitable error 
message and quit with an exit 1.  If the script executes a gcc command without 
printing an error message, then it should exit with status 0. 
 

Write your answer below. The #!/bin/bash first line of the script is provided for you.   
 
#!/bin/bash 
 



 CSE 374 Midterm Exam 5/2/22  

  Page 5 of 13 

Question 4. (12 points, 2 each) grep. Suppose we have a file hello.txt containing this text 
(including the // line numbers at the end of each line): 
 

Hello World         // Line 1 
hello world         // Line 2 
world hello         // Line 3 
WORLD HELLO         // Line 4 
hello hello world   // Line 5 
hello world world   // Line 6 

 
For each of the following grep commands, circle the numbers of the lines from this file 
that will appear in the grep output.  Note that grep -i compares strings ignoring case 
(i.e., grep -i Hello … will match Hello, hello, heLLo, and so forth).  Hint: 
recall that [aw-z] matches a, w, x, y, z; and [^aw-z] matches all other characters 
besides a, w, x, y, z.  A single ^ in a pattern outside of [ ] brackets means something else. 
 
(a)  grep "hello world" hello.txt 
 
  1  2  3  4 5 6 
 
 
(b)  grep -i "^hello world" hello.txt 
 
  1  2  3  4 5 6 
 
 
(c)  grep "[^hello]" hello.txt 
 
  1  2  3  4 5 6 
 
 
(d)  grep "^[^hello]" hello.txt 
 
  1  2  3  4 5 6 
 
 
(e)  grep "world$" hello.txt 
 
  1  2  3  4 5 6 
 
 
(f)  grep "world.*$" hello.txt 
 
  1  2  3  4 5 6 
 
  



 CSE 374 Midterm Exam 5/2/22  

  Page 6 of 13 

Question 5. (14 points, 7 each) (sed)  We have a file snake.txt containing the 
following: 
 
 Sydney the snake slid down a slippery slope. 
  Since getting stuck in a snare made of sticks and some string, she'd 
           somehow succumbed to an embarrassing, sibilant stutter. She was sneakily 
 in search of a slimy, secret spot where she could sink into obscurity. 
  Sadly, she never found it. 
 
(credit: Sydney the Stuttering Snake, adapted from http://fiftywordstories.com/tag/alliteration/) 
 
For each of the following, use sed with a single ‘s’ command and basic regular 
expressions (not extended) to produce the requested results.  You may also include a 
grep command if needed.  The solution must be a single-line command that could be 
typed in a bash shell window, assuming that snake.txt is in the current directory. 
 
(a) Write a command to remove all leading whitespace (spaces and tabs) from 
snake.txt, and store the answer in file snake2.txt.  (Hint: use \t to include a tab 
in a regular expression) 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Write a command to replace all double pairs of letters with a single copy of that letter 
in snake.txt. For example, the word “getting” should be replaced with “geting” and 
“succumbed” replaced with “sucumbed”. Write the results to standard output. 
 
 
 
 
 
  



 CSE 374 Midterm Exam 5/2/22  

  Page 7 of 13 

Question 6.  (18 points)  The traditional, annoying C program.  As is usual, this program 
compiles and executes without warnings or errors, although this time it might contain a 
bug or two that causes unexpected output, but without a crash. 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
void copyString(char* src, char* dst, int len) { 
  for (int i = 0; i < len; i++) { 
    dst[i] = src[i]; 
  } 
  // Draw picture for part (a) when execution gets HERE  
  // the 2nd time copyString is called 
} 
 
int main() { 
  char* hello = "Hello"; 
  char* names[] = {"Bennedict", "Xinyue"}; 
  char name[10] = {0}; // initializes all chars in name to \0 
  copyString(names[0], name, strlen(names[0])); 
  printf("%d: %s %s\n", 0, hello, name); 
  copyString(names[1], name, strlen(names[1])); 
  printf("%d: %s %s\n", 1, hello, name); 
  return EXIT_SUCCESS; 
}  
 
(a) (12 points) On the next page, draw a diagram showing the contents of memory when 
execution reaches the “draw picture” comment at the end of function copyString. the 
second time it is called.  Be sure to show boxes for the local variables and parameters of 
all active functions, including main.  If a variable is a pointer, indicate its value by 
drawing an arrow between the variable and the storage location (variable) that it points 
to.  Hint: you will probably find it convenient to trace execution and draw the diagram 
from the beginning and stop when you reach the end of copyString the second time.  
Be sure to clear up any old values of pointers or variables so the diagram clearly shows 
memory when we reach the end of copyString the second time. 
 
(b) (6 points) What output is produced by this program when it is executed? 
 
 
 
 
 
 
 
  
(write your answer to part (a) on the next page)  



 CSE 374 Midterm Exam 5/2/22  

  Page 8 of 13 

Question 6. (cont)  (a) Draw your diagram below showing the contents of memory when 
execution reaches the “draw picture” comment in function copyString the second 
time.  Code repeated for convenience. 
 

void copyString(char* src, char* dst, int len) { 
  for (int i = 0; i < len; i++) { 
    dst[i] = src[i]; 
  } 
  // Draw part (a) picture when execution gets HERE the 2nd time  
} 
 

int main() { 
  char* hello = "Hello"; 
  char* names[] = {"Bennedict", "Xinyue"}; 
  char name[10] = {0}; // initializes all chars in name to \0 
  copyString(names[0], name, strlen(names[0])); 
  printf("%d: %s %s\n", 0, hello, name); 
  copyString(names[1], name, strlen(names[1])); 
  printf("%d: %s %s\n", 1, hello, name); 
  return EXIT_SUCCESS; 
}  
 
 
 
  



 CSE 374 Midterm Exam 5/2/22  

  Page 9 of 13 

Question 7. (20 points)  The small C programming exercise.  Write a small C program 
that prints the number of times its first argument string appears in the all of the 
command-line arguments when it is executed.  If the compiled program is named 
countargs, then execution should produce the following output: 
 

 ./countargs foo 
 foo appears once 
 ./countargs foo foo 
 foo appears 2 times 
 ./countargs foo bar foo foo baz fi 
 foo appears 3 times 
 

If the program does not have at least one command-line argument (foo in the above 
example), it should print an appropriate error message and exit with an appropriate status 
code.  You should not include the program name itself (./countargs above) in the 
count, even if the first argument is the same as the program name.  Just count how many 
times the first argument appears starting with the first argument. 
 

The usual page of reference information is included at the end of the exam, although you 
may not need most of that information since this program only examines the strings in the 
argument list and does not read or write any files (other than messages to stdout). 
 

Write your answer below.  Some #inclues that you might find useful are written for you.  
You can include all of the code in a single main function if you wish. 
 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(additional space for your answer on the next page)  



 CSE 374 Midterm Exam 5/2/22  

  Page 10 of 13 

Question 7. (cont.)  Additional space for your answer if needed. 
  



 CSE 374 Midterm Exam 5/2/22  

  Page 11 of 13 

Question 8. (3 free points) (All reasonable answers receive the points.  All answers are 
reasonable as long as there is an answer. J) 
 
(a) (2 point) What question were you expecting to appear on this exam that wasn’t 
included? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) (1 points) Should we include that question on the final exam?  (circle or fill in) 
 
  Yes 
 
  No 
 
  Heck No!! 
 
  $!@$^*% No !!!!! 
 
  Yes, yes, it must be included!!! 
 
  No opinion / don’t care 
 
  None of the above.  My answer is _________________________________. 
 
  



 CSE 374 Midterm Exam 5/2/22  

  Page 12 of 13 

Additional space for answers if needed.  Please indicate clearly which questions you 
are answering here, and also be sure to indicate on the original page that the rest of 
the answer can be found here. 
 
  



 CSE 374 Midterm Exam 5/2/22  

  Page 13 of 13 

Reference Information  
 
Some of this information might be useful while answering questions on the exam.  Feel 
free to remove this page for reference while you work.  Please do not write on this page – 
anything written here will not be graded. 
 
Shell: Some of the tests that can appear in a [ ] or [[ ]] test command in a bash script: 

• string comparisons: =, != 
• numeric comparisons: -eq, -ne, -gt, -ge, -lt, -le 
• -d name  test for directory 
• -f name  test for regular file 

Shell variables: $# (# arguments), $? (last command result), $@, $* (all arguments), $0, 
$1, … (specific arguments), shift (discard first argument) 
 
Strings and characters (<string.h>, <ctype.h>) 
 
Some of the string library functions: 

• char* strncpy(dest, src, n), copies exactly n characters from src to dst, 
adding ‘\0’s at end if fewer than n characters in src so that n chars. are copied. 

• char* strcpy(dest, src) 
• char* strncat(dest, src, n), append up to n characters from src to the end of 

dest, put ‘\0’ at end, either copy from src or added if no ‘\0’ in copied part of src. 
• char* strcat(dest, src) 
• int   strncmp(string1, string2, n), <0, =0, >0 if compare <, =, > 
• int   strcmp(string1, string2) 
• char* strstr(string, search_string) 
• int   strnlen(s, max_length) 
• int   strlen(s) 
• Character tests: isupper(c), islower(c), isdigit(c), isspace(c) 
• Character conversions: toupper(c), tolower(c) 

 
Files (<stdio.h>) 
 
Some file functions and information: 

• Default streams: stdin, stdout, and stderr. 
• FILE* fopen(filename, mode), modes include “r” and “w” 
• char* fgets(line, max_length, file), returns NULL on end of file 
• int   feof(file), returns non-zero if end of file has been reached 
• int   fputs(line, file) 
• int   fclose(file) 

A few printf format codes: %d (integer), %c (char), %s (char*)  


