
 CSE 374 22sp Final Exam 6/7/22

 Page 1 of 14

Name ________________________________ UW ID# _________________

There are 7 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, etc., except
that you may have two 5x8 cards or equivalent with any hand-written notes you wish on
both sides.

Many of the questions have short solutions, even if the question is somewhat long. Don’t
be alarmed. If you don’t remember the exact syntax of some command or the format of a
command’s output, make the best attempt you can. We will make allowances when
grading.

There is a blank page at the end with extra space for answers if you need more room.

If you have a question, please raise your hand and stay seated.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 12

2. ______ / 20

3. ______ / 18

4. ______ / 16

5. ______ / 18

6. ______ / 14

7. ______ / 2

 CSE 374 22sp Final Exam 6/7/22

 Page 2 of 14

Question 1. (12 points) Preprocessor. We have the following small program consisting
of these two files:

hdr.h main.c
#define SIZE 10

typedef char* strptr;

void compute(char a[], int n);

#include "hdr.h"

#define NTIMES 2 * SIZE

int main(int argc, char** argv) {
 strptr s;
 char a[SIZE];
 s = a;
 compute(s, NTIMES + 1);
 return 0;
}

File main.c does compile successfully to produce main.o without errors, although
this one file by itself is not a complete program since function compute is not included.

Show the output produced by the preprocessor command cpp –P main.c when it
reads and processes this file to generate a source file that can be translated by the
compiler to generate main.o. Your answer should show all of the output from the
preprocessor, exactly as produced by that cpp command.

 CSE 374 22sp Final Exam 6/7/22

 Page 3 of 14

Question 2. (20 points) making things and a bit of git. Suppose we have the following
Makefile in the current directory. (Note: recall that if no -o option is present on a
gcc command, the -c option will cause the compiler to generate a file named x.o if the
input is x.c.)

annoy: annoy.o complain.o

 gcc -Wall -g -std=c17 -o annoy annoy.o complain.o

complain.o: complain.h complain.c

 gcc -Wall -g -std=c17 -c complain.c

annoy.o: annoy.c complain.h

 gcc -Wall -g -std=c17 -c annoy.c

 (a) (7 points) In the space below, draw a dependency graph (diagram) showing the
dependencies between the files as specified by the above Makefile. Your drawing
should have an arrow from each file to the files that it depends on, as in the diagram to
the left, where foo depends on fum, which depends in turn on fie.

(continued on next page)

fie

fum

foo

 CSE 374 22sp Final Exam 6/7/22

 Page 4 of 14

Question 2. (cont.) (b) (7 points) Now suppose we want to add to this program a new
source file irritate.c along with an associated header file irritate.h. File
irritate.c only includes the irritate.h header; it does not use any of the others.
Files annoy.c and complain.c have been modified to use the new functions in these
new irritate files, with the appropriate #include and calls to the new functions.

Write in the modifications needed in the copy of the Makefile below so that these new
files are included in the program and are correctly compiled (and recompiled) as needed
when the program is built.

annoy: annoy.o complain.o

 gcc -Wall -g -std=c17 -o annoy annoy.o complain.o

complain.o: complain.h complain.c

 gcc -Wall -g -std=c17 -c complain.c

annoy.o: annoy.c complain.h

 gcc -Wall -g -std=c17 -c annoy.c

(c) (6 points) We’ve been using git and the CSE gitlab repository to manage our
code for this project. Once the new irritate.h and irritate.c files have been
tested and the Makefile and other changed files have been updated in our local copy of
the program, we need to be sure to save the new and changed files in our gitlab repo.
Write the necessary git commands below to update the gitlab repository to reflect
the addition of these new files as well as the other changes made to existing files. You
should assume that the current directory in the terminal window is the local git working
copy directory containing the source files.

 CSE 374 22sp Final Exam 6/7/22

 Page 5 of 14

Question 3. (18 points) bugs. One of our colleagues has been trying to write a small C
function that is supposed to return the number of 0’s found in an integer array. Their
code does compile without errors, but it doesn’t work right. The main program always
prints “answer = 0” no matter how many 0’s actually appear in the array. In addition,
we’re suspicious that the program might leak memory and it may have some other pointer
or other problems, but, amazingly, it doesn’t seem to crash or produce segfaults.

(a) (12 points) On the code listing below, identify all of the problems with the existing
code. Your answers can be brief – you don’t need to write an extensive essay, but you
should identify and explain each place where there is some sort of bug in the code.

After marking the bugs, continue with the rest of this problem on the next page.

#include <stdio.h>
#include <stdlib.h>

// return the number of elements that are 0 (zero)
// in the given array which has arr_len elements.
int countZeroes(int arr[], int arr_len) {

 int* count = malloc(sizeof(int));

 for (int i = 0; i < arr_len; i++) {

 if (arr[i] == 0) {

 count += 1;

 }
 }

 return *count;

}

// simple test for countZeroes

int main() {

 int nums[] = { 1, 3, 0, 4, -3, 0, 17 };

 int nzero = countZeroes(nums, 7);

 printf("answer = %d\n", nzero);

 return 0;

}

 CSE 374 22sp Final Exam 6/7/22

 Page 6 of 14

Question 3. (cont.) (b) (6 points) Now that you have identified the problems with the
code on the previous page, show how to fix the code to work properly by writing in
changes on the copy of the code below. You may not change the basic organization of
the code or alter the specification of function countZeroes. But you are free to
modify the implementation to fix the bugs in whatever way seems simplest. Your
modified version should produce the correct answers and should execute with no errors,
memory leaks, or any other problems.

Write your answers directly on this page. Cross out anything you wish to delete and
write your corrections below. If you insert new code, be sure it is clear where the
insertions should be made. Hint: it might be possible to fix things by simplifying the
existing code rather than patching each bug in the original version separately.

#include <stdio.h>
#include <stdlib.h>

// return the number of elements that are 0 (zero)
// in the given array which has arr_len elements.
int countZeroes(int arr[], int arr_len) {

 int* count = malloc(sizeof(int));

 for (int i = 0; i < arr_len; i++) {

 if (arr[i] == 0) {

 count += 1;

 }
 }

 return *count;

}

// simple test for countZeroes

int main() {

 int nums[] = { 1, 3, 0, 4, -3, 0, 17 };

 int nzero = countZeroes(nums, 7);

 printf("answer = %d\n", nzero);

 return 0;

}

 CSE 374 22sp Final Exam 6/7/22

 Page 7 of 14

Question 4. (16 points) A little C programming. As you remember from previous
courses, a classic data structure is a binary search tree (BST). A BST is a binary tree
where each node in the tree holds a value. For each node, all of the values in its left
subtree are less than the value in that node and all of the values in its right subtree are
greater.

For this problem we have a BST containing C string values. The tree nodes are defined
by the following struct. All of the node structs and all strings (char arrays) referenced
by the field val have been independently allocated on the heap using malloc.

 struct bstnode { /* node for a BST of strings: */
 char * val; /* string value of this node */
 struct bstnode *left; /* left subtree or NULL if empty */
 struct bstnode *right; /* right subtree or NULL if empty */
 };

Your job is to implement a function free_bst(r) that will free all of the nodes and
strings in the BST with root node r.

You should assume that all necessary header files have already been #included and
you do not need to add any #includes.

Hints: recursion really, really, really is your friend.

A bit of (maybe) useful reference information about strings and memory:

Some basic C memory management functions:

• void * malloc(size_t size)
• void free(void *ptr)
• void * calloc(size_t number, size_t size)
• void * realloc(void *ptr, size_t size)

Write

 Your

 Answer

 On

 The

 Next

 Page…

 CSE 374 22sp Final Exam 6/7/22

 Page 8 of 14

Question 4. (cont.) Write your implementation of the free_bst function below. The
tree struct is repeated for reference.

 struct bstnode { /* node for a BST of strings: */
 char * val; /* string value of this node */
 struct bstnode *left; /* left subtree or NULL if empty */
 struct bstnode *right; /* right subtree or NULL if empty */
 };

// Free the nodes and strings in the BST with root r.
// If r == NULL, then r represents an empty tree and
// nothing needs to be done.
void free_bst(struct bstnode *r) {

}

 CSE 374 22sp Final Exam 6/7/22

 Page 9 of 14

Question 5. (18 points) A bit of memory management. Recall from HW6 that we stored
the free list for the getmem/freemem memory manager using a linked list of free
blocks. The beginning of each freelist block is described by the following C struct:

struct free_node { // node (block) on free list:
 uintptr_t size; // number of bytes in this
 // block, not including the
 // size of this header
 struct free_node *next; // next block on free list or
 // NULL if this is the last
}; // block on the free list

(For this problem, you should assume that the size field in the free_node struct
gives only the number of bytes of data following the header struct, and does not include
the size of the 16-byte header itself.)

When blocks are returned to the free list by freemem, the memory manager is supposed
to check whether the returned block occupies locations in storage that are immediately
adjacent to an existing block on the freelist and, if so, the adjacent (touching) blocks are
supposed to be merged into a single larger block on the free list

For this problem we want to write a function that checks the free list to discover if there
are any adjacent blocks on the free list that should have been merged previously. The
function merge_ok(p) should search the free list starting at free list node p. It should
check each node in the free list to verify that the next node on the free list is not
immediately adjacent to the current one, i.e., for each node on the list starting at p, check
that the end of that node does not have the same address as the free_node header of
the next block.

If merge_ok finds any adjacent blocks that should have been merged, it should return
false (0). If it does not find any problems, it should return true (1).

You should assume that the blocks on the free list are correctly stored in order of
ascending addresses, and that no two blocks on the free list overlap (i.e., the end of one
block won’t be somewhere in the middle of the next block).

You should assume that all necessary header files have already been #included and
you do not need to add any #includes.

Write your answer on the next page.

(continued on next page)

 CSE 374 22sp Final Exam 6/7/22

 Page 10 of 14

Question 5. (cont.) Write your implementation of merge_ok below. The heading of
the function is written for you, and the definition of the free_node struct is repeated
for convenience.

struct free_node { // node on free list:
 uintptr_t size; // number of bytes in this
 // block, not including the
 // size of this header
 struct free_node *next; // next block on free list or
 // NULL if this is the last
}; // block on the free list

// Return 1 (true) if there are no touching adjacent blocks
// on the free list starting at p. Return 0 (false) if any
// two adjacent blocks are touching.
int merge_ok(struct free_node *p) {

}

 CSE 374 22sp Final Exam 6/7/22

 Page 11 of 14

Question 6. (14 points) A little C++. To explore a bit more of C++, we are creating a
simple class to represent 3-D vectors. (Don’t worry if you are not familiar with vectors –
this is a programming problem and the details are all described here.) So far, we’ve
created this file Vector.h to declare the class, its representation, a constructor, and an
addition function.

#ifndef VECTOR_H_
#define VECTOR_H_

class Vector {
 public:
 // Construct Vector with x,y,z coordinates (a,b,c)
 Vector(double a, double b, double c);

 // arithmetic: return a new Vector that is the sum of this and
 // other. If this Vector has components with values (a,b,c)
 // and other has components with values (p,q,r), the new
 // returned vector has components (a+p, b+q, c+r)
 Vector plus(Vector other) const;

 private:
 // Representation of a Vector: x, y, z coordinates
 double x, y, z;
};

#endif // VECTOR_H_

Below, give the implementations of the constructor and function plus as they would
appear in the associated implementation file Vector.cc. The #include at the
beginning of Vector.cc is written for you. Hint: the answers are not long, but
additional space is provided on the next page for you to use if needed.

#include "./Vector.h"

 CSE 374 22sp Final Exam 6/7/22

 Page 12 of 14

Question 6. (cont.) Additional space for your code for the constructor and plus
function in file Vector.cc, if needed.

	

 CSE 374 22sp Final Exam 6/7/22

 Page 13 of 14

Question 7. (2 free points – all answers get the free points) Draw a picture of
something you plan to do this summer!

Congratulations on lots of great work this quarter!!
Have a great summer!

The CSE 374 staff

 CSE 374 22sp Final Exam 6/7/22

 Page 14 of 14

Extra space for answers, if needed. Please be sure to label which question(s) are
answered here, and be sure to put a note on the question page so the grader will know to
look here.

