
Lecture 29: Final Exam
Review & Careers in tech

CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #29

Log onto pollev.com/cse374
Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia

▪Reminders:

-Final exam Wednesday 12/15 8:30am to 10:20am in CS2 G10

-HW6 due Monday

-Individual HWs 4, 5 & 6 due

-No office hours next week (we will respond to Ed posts)

-HW5 grades posting Monday 10/13 - Regrade requests will be due Thursday 10/16

▪Note: Klaatu gets cleaned off at the start of each quarter

▪Career Stuff:

-https://bit.ly/csecareerguide https://bit.ly/cseresumeguide

-492J - “Careers in Tech” seminar 1 cr no hw lectures on how to get an interview & pass it

- Join Husky Coding Project - student founded and run personal coding project club

-Feel free to set up time with Kasey anytime via calendly! once a student always a student :)

2CSE 374 AU 20 - KASEY CHAMPION

Final Exam Outline:
▪C Pointer mystery
▪C Errors
▪C dynamic memory
programming
▪C Make Files
▪C++ inheritance mystery
▪C++ Programming
▪Assembly

https://bit.ly/csecareerguide
https://bit.ly/cseresumeguide

Final Review
3

Pointer and Address Syntax in C

int* ptr; // a variable of type “pointer to int” without assignment

int x = 123; //an int variable called “x” that stores “123”

ptr = &x; // store the address of “x” in “ptr”

* Means “pointer to type”
-* placed after type indicates a pointer data type

- Similar in java if you add [] after type you declare an array of that type

- int* means “pointer to int”

& means “address variable”
-Placing an & before a variable name will give you the address in memory of that variable

4CSE 374 AU 20 - KASEY CHAMPION

int *ptr; also works! Programmer preference

*ptr x &x

123

Dereferencing Pointers
int x = 123;

int* ptr = &x;

*ptr = 456;

printf(“new value of y:%d\n”, *ptr);

▪Placing a * before a pointer dereferences the pointer
- Means “follow this pointer” to the actual data
- *ptr = <data> will update the data stored at the address the pointer is referring to ie ‘write to memory’
- *ptr will read the data stored at the address indicated by the pointer
- Accessing unused addresses causes a ‘segmentation fault’

▪A dangling pointer is one that points to a dead local variable
- Data that is no longer in use
- Dereferencing a dangling pointer is “undefined behavior” (UB)
- UB means ANYTHING could happen

- Program could crash(best case), silently fail(worst case)

- GCC can catch this kind of error with a warning, but not always

5CSE 374 AU 20 - KASEY CHAMPION

Pointer Mystery

6CSE 374 AU 20 - KASEY CHAMPION

#include <stdio.h>
// What does the program print?

void mystery(char *a, int *b, int c)
{
 int *d = b - 1;
 c = *b + c;
 *b = c - *d;
 *d = *b - *d;
 a[2] = a[b - d];
}

int main(int argc, char **argv)
{
 char ant[4] = "bed";
 int x[2];
 *x = 6;
 x[1] = 7;
 int y = 4;
 int *z = &y;
 *z = *x;
 printf("%d %d %d %s\n", *x, x[1], y, ant);
 mystery(ant, x + 1, y);
 printf("%d %d %d %s\n", *x, x[1], y, ant);
}

b e d

4

ant

x

y

z

7

Output:
6 7 6 bed
1 7 6 bee

6

6

Memory Allocation
▪Allocation refers to any way of asking for the
operating system to set aside space in memory

▪How much space? Based on variable type & your
system
- to get specific sizes for your system use “sizeof(<datatype>)”

function in stdlib.h

▪Global Variables – static memory allocation
- space for global variables is set aside at compile time, stored

in RAM next to program data, not stack
- space set aside for global variables is determined by C based

on data type
- space is preserved for entire lifetime of program, never freed

▪Local variables – automatic memory allocation
- space for local variables is set aside at start of function, stored

in stack
- space set aside for local variables is determined by C based on

data type
- space is deallocated on return

7CSE 374 AU 20 - KASEY CHAMPIONhttps://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html

* pointers require space needed for an address – dependent on your
system - 4 bytes for 32-bit, 8 bytes for 64-bit

Type Storage Size Value Range

char 1 byte -128 to 127 or 0 to 255

unsigned
char

1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes -32,786 to 32,767 or -2,147,483,648
to 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned
short

2 bytes 0 to 65,535

long 8 bytes -9223372036854775808 to
9223372036854775807

unsigned
long

8 bytes 0 to 18446744073709551615

float 4 bytes 1.2E-38 to 3.4E+38

double 8 bytes 2.3E-308 to 1.7E+308

long double 10 bytes 3.4E-4932 to 1.1E+4932

https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html

Dynamic Allocation

▪Situations where static and automatic allocation aren’t sufficient
-Need memory that persists across multiple function calls

- Lifetime is known only at runtime (long-lived data structures)

-Memory size is not known in advance to the caller
- Size is known only at runtime (ie based on user input)

▪Dynamically allocated memory persists until:
-A garbage collector releases it (automatic memory management)

- Implicit memory allocator, programmer only allocates space, doesn’t free it

- “new” in Java, memory is cleaned up after program finishes <HOW DOES THIS WORK?

-Your code explicitly deallocates it (manual memory management)
- C requires you manually manage memory

- Explicit memory allocation requires the programmer to both allocate space and free it up when finished

- ”malloc” and “free” in C

▪Memory is allocated from the heap, not the stack
-Dynamic memory allocators acquire memory at runtime

8CSE 374 AU 20 - KASEY CHAMPION

Storing Program Data in the RAM

▪When you trigger a new program the operating system
starts to allocate space in the RAM
-Operating System will default to keeping all memory for a program

as close together within the ram addresses as possible
-Operating system manages where exactly in the RAM your data is

stored
- Space is first set aside for program code (lowest available addresses)

- Then space is set side for initialized data (global variables, constants, string literals)

- As program runs…

- When the programmer manually allocates memory for data it is stored in the next
available addresses on top of the initialized data, building upwards as space is
needed

- When the program requires local variables they are stored in the empty space at
top of RAM, leaving space between stack and heap

- When the space between the stack and heap is full - crash (out of memory)

9CSE 374 AU 20 - KASEY CHAMPION

The heap is a large pool of available memory set aside
specifically for dynamically allocated data

Allocating Memory in C with malloc()
-void* malloc(size_t size)

- allocates a continuous block of “size” bytes of uninitialized memory

- Returns null if allocation fails or if size == 0

- Allocation fails if out of memory, very rare but always check allocation was successful before using pointer

- void* means a pointer to any type (int, char, float)

- malloc returns a pointer to the beginning of the allocated block

-var = (type*) malloc(sizeInBytes)
- Cast void* pointer to known type

- Use sizeof(type) to make code portable to different machines

-free deallocates data allocated by malloc
-Must add #include <stdlib.h>
-Variables in C are uninitialized by default

- No default “0” values like Java

- Invalid read – reading from memory before you have written to it

10CSE 374 AU 20 - KASEY CHAMPION

//allocate an array to store 10 floats
float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL)
{
 return ERROR;
}
printf(“%f\n”, *arr) // Invalid read!
<add something to array>
<print f again, now it’s ok>

Freeing Memory in C with free()
▪void free(void* ptr)

- Released whole block of memory stored at location ptr to
pool of available memory

- ptr must be the address originally returned by malloc (the
beginning of the block) otherwise system exception raised

- ptr is unaffected by free
- Set pointer to NULL after freeing it to deallocate that space too

- Calling free on an already released block (double free) is
undefined behavior – best case program crashes

- Rule of thumb: for every runtime call to malloc there should
be one runtime call to free

- if you lose all pointers to an object you can no longer free it
– memory leak!
- be careful when reassigning pointers
- this is usually the cause of running out of memory- unreachable data that

cannot be freed

- if you attempt to use an object that has been freed you hit a
dangling pointer

- all memory is freed once a process exits, and it is ok to rely
on this in many cases

11CSE 374 AU 20 - KASEY CHAMPION

//allocate an array to store 10 floats
float* arr = (float*)
malloc(10*sizeof(float));
if (arr == NULL)
{
 return ERROR;
}
for (int i = 0; i < size*num; i++)
{
 arr[i] = 0;
}
free(arr);
arr = NULL; // Optional

Common Memory Errors

12CSE 374 AU 20 - KASEY CHAMPION

int x[] = {1, 2, 3};
free(x);

char** strings = (char**)malloc(sizeof(char)*5);
free(strings);

x is a local variable stored in stack, cannot be freed

x = (int*)malloc(M*sizeof(int));
free(x);
y = (int*)malloc(M*sizeof(int));
free(x);

Double free and Forgetting to free memory “memory leak”

x = (int*)malloc(M*sizeof(int));
free(x);
y = (int*)malloc(M*sizeof(int));
for (i=0; i<M; i++)
 y[i] = x[i];

Accessing freed memory

Mismatch of type - wrong allocation size

Common Memory Errors

13CSE 374 AU 20 - KASEY CHAMPION

#define LEN 8
int arr[LEN];
for (int i = 0; i <= LEN; i++)
 arr[i] = 0;

int* foo()
{
 int val = 0;
 return &val;
}

Out of bounds access
dangling pointer

Dereferencing a non-pointer

int sum_int(int* arr, int len)
{
 int sum;
 for (int i = 0; i < len; i++)
 sum += arr[i];
 return sum;
}

Reading memory before allocation

long val;
printf(“%d”, &val);

int foo()
{
 int* arr = (int*)malloc(sizeof(int)*N);
 read_n_ints(N, arr);
 int sum = 0;
 for (int i = 0; i < N; i++)
 sum += arr[i];
 return sum;
}

memory leak – failing to free memory

Structs

▪structs are a method of constructing new
datatypes
-store a collection of values together in memory, fields

-similar to a Java class, but no methods

-individual values are referred to using the “.” operator

-can use typedef to rename and turn struct tag into a
“type”
typedef struct Cat Cat;

or

typedef struct Cat {

 …

} Cat;

Then you don’t need keyword “struct”

Cat mercy; instead of struct Cat mercy;

14CSE 374 AU 20 - KASEY CHAMPION

struct Cat
{
 char *name;
 int age;
 char *breed;
}
int main()
{
 struct Cat mercy;
 mercy.name = “Iron Fist No Mercy”;
 mercy.age = 6;
 mercy.breed = “Pixie Bob”;
}

Parameters / Arguments

▪Function parameters are initialized with a copy of corresponding argument
-If the argument is a pointer, the parameter value will point to the same thing (pointer is copied)

-arrays are passed as pointers

-Structs are passed as a copy by default, so it is more common to intentionally pass as pointers
- avoids copying large objects

- allows manipulation of original struct <- allows creation of methods that manipulate new type, like Java

- to access members you must dereference the pointer (*) and access the field (.) – use parentheses to ensure dereference happens first

- (*ptr). has a shortcut: ptr->

Cat (*ptr) = (Cat*)malloc(sizeof(Cat));

(*ptr).age = 6;

…

(*ptr).age++;

ptr->age;

15CSE 374 AU 20 - KASEY CHAMPION

Common C Bugs

▪ forget to free -> program uses more memory than needed
▪ memory leak -> lose pointer to start of dynamically allocated memory, can’t free
▪ keep using after free -> later calls to malloc may reuse freed memory
▪ double free -> can corrupt internal data structures of malloc
▪ dangling pointer -> lose memory that pointer referenced, dereferencing dangling pointer,

undefined behavior

Segmentation Fault
- attempt to access memory that “does not belong to you”
- indicates memory corruption
- Can be caused by:

- array index out of bounds
- accessing freed memory
- dereferencing null pointer
- changing String(char*) literal

16https://en.wikipedia.org/wiki/Segmentation_fault

https://en.wikipedia.org/wiki/Segmentation_fault

C Debugger

▪A debugger is a tool that lets you stop running programs, inspect values etc…
-instead of relying on changing code (commenting out, printf) interactively examine variable values, pause and

progress set-by-step
-don’t expect the debugger to do the work, use it as a tool to test theories
-Most modern IDEs have built in debugging functionality

▪‘gdb’ -> gnu debugger, standard part of linux development, supports many languages
-techniques are the same as in most debugging tools
-can examine a running file
-can also examine core files of previous crashed programs

▪Want to know which line we crashed at (backtrace)

▪Inspect variables during run time

▪Want to know which functions were called to get to this point (backtrace)

17CSE 374 AU 21 - KASEY CHAMPION

Meet gdb

▪Compile code with ‘-g’ flag
-gcc -g program.c
-saves human readable info

▪Open program with gdb <executable file>

-gdb a.out

▪start or restart the program: run <program args>
- quit the program: kill
- quit gdb: quit

▪Reference information: help
-Most commands have short abbreviations

- bt = backtrace

- n = next

- s = step

- q = quit

-<return> often repeats the last command

18CSE 374 AU 21 - KASEY CHAMPION[Video] gdb debugger demo

https://www.youtube.com/watch?v=bWH-nL7v5F4

Valgrind

▪Valgrind is a tool that simulates your program to find memory errors
-catches pointer errors during execution

-prints summary of heap usage, including details of memory leaks

gcc -g -o myprogram myprogram.c

valgrind --leak-check=full myprogram arg1 ag

19CSE 374 AU 21 - KASEY CHAMPION

▪Can show:
-Use of uninitialized memory

-Reading/writing memory after it has been free'd

-Reading/writing off the end of malloc'd blocks

-Reading/writing inappropriate areas on the stack

-Memory leaks -- where pointers to malloc'd blocks are
lost forever

-Mismatched use of malloc/new/new [] vs
free/delete/delete []

-Overlapping src and dst pointers in memcpy() and
related functions

[Video] Valgrind Demo

https://www.youtube.com/watch?v=bb1bTJtgXrI

Valgrind Example

20CSE 374 AU 21 - KASEY CHAMPION

example1.c

terminal

Attempt to write 4 bytes to an invalid location in
memory (sizeof(int))
a[10] -> index out of bounds

Valgrind EX2

21CSE 374 AU 21 - KASEY CHAMPION

example2.c

terminal

attempting to print a[10] which is not an initialized
value (array index out of bounds)

Multi-File C Programming

▪You can split C into multiple files!
-What if we wanted to use Linked List code in a different project?

-If the linked list code is long, it can make files unwieldy

-What if we want to separate our “main” from the struct definitions

▪Pass all “.c” files into gcc:

gcc -o try_lists ll.c main.c

Must include code header files to enable one file to see the other, otherwise you have linking
errors

22CSE 374 AU 20 - KASEY CHAMPION

Sharing code across files

▪Must always declare a function or struct in every
file it’s used in
-Thank goodness C lets us separate declarations and

definitions ;)

-Include function header as definition

Node *make_node (int value, Node *next);
-Include struct type definition

typedef struct Node
{
 int value;
 struct Node *next;
} Node;

23CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

typedef struct Node {
 int value;
 struct Node *next;
} Node;

Node *make_node(int value, Node *next);

Node *make_node(int value, Node *next) {
 Node *node = (Node*) malloc(sizeof(Node));
 node->value = value;
 node->next = next;
 return node;
}

#include <stdlib.h>
#include <stdio.h>

typedef struct Node {
 int value;
 struct Node *next;
} Node;

Node *make_node(int value, Node
*next);

int main() {
 Node *n1 = make_node(4, NULL);
 Node *n2 = make_node(7, n1);
 Node *n3 = make_node(3, n2);

 // rest of main…
}

ll.c

main.c

Header Files
▪Copying your function declarations to every file you
want to use them is not fun
-If you forget to make a change to all of them, confusing

errors occur!

▪A header file (.h) is a file which contains just
declarations

▪#include inserts the contents of a header file into
your .c file
-Put declarations in a header, then include it in all other

files
- Two types of #include
#include <stdio.h>

- Used to include external libraries. Does not look for other files that you
created.

#include "myfile.h"
- Used to include your own headers. Searches in the same folder as the

rest of your code.

24CSE 374 AU 20 - KASEY CHAMPION

typedef struct Node {
 int value;
 struct Node *next;
} Node;

Node *make_node(int value, Node *next); ll.h

#include <stdlib.h>
#include <stdio.h>

#include "ll.h"

Node *make_node(int value, Node *next) {
 Node *node = (Node*) malloc(sizeof(Node));
 node->value = value;
 node->next = next;
 return node;
} ll.c

#include "ll.h"

int main() {
 Node *n1 = make_node(4, NULL);
 Node *n2 = make_node(7, n1);
 Node *n3 = make_node(3, n2);

 // rest of main…
} main.c

Header Guards

▪Consider the following header structure:
-Header A includes header B.

-Header C includes header B.

-A source code file includes headers A and C.

-The code now includes two copies of header B!

-Solution: "header guard”
- Uses ifndef to check if header is already defined for this file

25CSE 374 AU 20 - KASEY CHAMPION

#ifndef LL_H
#define LL_H

typedef struct Node {
 int value;
 struct Node *next;
} Node;

Node *make_node(int value, Node *next);
#endif ll.h

#include <stdlib.h>
#include <stdio.h>

#include "ll.h"

Node *make_node(int value, Node *next) {
 Node *node =
(Node*)malloc(sizeof(Node));
 node->value = value;
 node->next = next;
 return node;
} ll.c

#include "ll.h"

int main() {
 Node *n1 = make_node(4, NULL);
 Node *n2 = make_node(7, n1);
 Node *n3 = make_node(3, n2);

 // rest of main…
} main.c

Make Files
▪Make is a program which automates building dependency trees

- List of rules written in a Makefile declares the commands which build each intermediate part
- Helps you avoid manually typing gcc commands, easier and less prone to typos
- Automates build process

▪ Makefiles are a list of with Make rules which include:
- Target - An output file to be generated, dependent on one or more sources
- Source – Input source code to be built
- Recipe - command to generate target

▪Makefile logic
- Make builds based on structural organization of how code depends on other code as defined by includes
- Recursive – if a source is also a target for other sources, must also evaluate its dependencies and remake as required
- Make can check when you've last edited each file, and only build what is needed!

- Files have "last modification date". make can check whether the sources are more recent than the target

- Make isn’t language specific: recipe can be any valid shell command

▪run make command from within same folder
- $ make [-f makefile] [options] … [targets] ../
- Starts with first rule in file then follows dependency tree
- -f specifies makefile name, if non provided will default to “Makefile”
- if no target is specified will default to first listed in file

26CSE 374 AU 20 - KASEY CHAMPIONhttps://www.gnu.org/software/make/manual/make.html#Introduction

ll.o: ll.c ll.h
 gcc -c ll.c

target: source
 recipetab not spaces!

Make Rule Syntax:

https://www.gnu.org/software/make/manual/make.html#Introduction

Example Makefile

27CSE 374 AU 20 - KASEY CHAMPION

CC = gcc
CGLAGS = -g –Wall –std=c11

try_lists: main.o ll.o
 $(CC) $(CFLAGS) -o try_lists main.o ll.o

main.o: main.c ll.h
 $(CC) $(CFLAGS) –c main.c

ll.o: ll.c ll.h
 $(CC) $(CFILES) –c ll.c Makefile

variable definitions

must include rules
for each non .h file

rules define
dependency
hierarchy

try_lists

main.o ll.o

main.c ll.h ll.c

Example

28CSE 374 AU 20 - KASEY CHAMPION

#include <stdio.h>
#include "speak.h"
/* Write message m to stdout */
void speak(char m[])
{
 printf("%s\n", m);
} speak.c

#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "speak.h"
#include "shout.h"
/* Write message m in uppercase to stdout */
void shout(char m[])
{
 int len; /* message length */
 char *mcopy; /* copy of original message */
 int i;
 len = strlen(m);
 mcopy = (char *)malloc(len*sizeof(char)+1);
 strcpy(mcopy,m);
 for (i = 0; i < len; i++)
 mcopy[i] = toupper(mcopy[i]);
 speak(mcopy); free(mcopy);
} shout.c

#ifndef SPEAK_H
#define SPEAK_H
/* Write message m to stdout */
void speak(char m[]);
#endif /* ifndef SPEAK_H */ speak.h

#ifndef SHOUT_H
#define SHOUT_H
/* Write message m in uppercase to stdout */
void shout(char m[]);
#endif /* ifndef SHOUT_H */ shout.h

#include "speak.h"
#include "shout.h"
/* Say HELLO and goodbye */
int main(int argc, char* argv[])
{
 shout("hello");
 speak("goodbye");
 return 0;
} main.c

all: talk
The executable
talk: main.o speak.o shout.o
 gcc -Wall -std=c11 -g -o talk main.o speak.o shout.o

Individual source files
speak.o: speak.c speak.h
 gcc -Wall -std=c11 -g -c speak.c
shout.o: shout.c shout.h speak.h
 gcc -Wall -std=c11 -g -c shout.c
main.o: main.c speak.h shout.h
 gcc -Wall -std=c11 -g -c main.c

A "phony" target to remove built files and backups
clean: rm -f *.o talk *~ Makefile

talk

speak.omain.o

shout.c speak.cmain.c

shout.o

shout.h speak.h

Hello World C++ ostrem

29CSE 374 AU 20 - KASEY CHAMPION

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

•ostream has many different methods to
handle <<

• The functions differ in the type of the
right-hand side (RHS) of <<

e.g. if you do std::cout << "foo"; , then
C++ invokes coutʼs function to handle << with
RHS char*

•The ostream classʼ member
functions that handle << return a
reference to themselves

• When std::cout << "Hello,
World!"; is evaluated:

• A member function of the std::cout
object is invoked

• It buffers the string "Hello, World!"
for the console

And it returns a reference to std::cout

Namespaces

A namespace is a declarative region that
provides a scope to the identifiers (the
names of types, functions, variables, etc)
inside it.

- used to organize code into logical
groups and to prevent name collisions
that can occur especially when your
code base includes multiple libraries

- allow us to group named entities that
otherwise would have global scope into
narrower scopes, giving them
namespace scope. This allows
organizing the elements of programs
into different logical scopes referred to
by names.

30

// A program to demonstrate need of
namespace
int main()
{
 int value;
 value = 0;
 double value; // Error here
 value = 0.0;
}

Compiler Error:
'value' has a previous declaration as 'int value'

#include <iostream>
using namespace std;

// Variable created inside namespace
namespace first
{
 int val = 500;
}
// Global variable
int val = 100;

int main()
{
 // Local variable
 int val = 200;

 // These variables can be accessed from outside the namespace
 // using the scope operator ::
 cout << first::val << '\n';

 return 0;
}

https://www.geeksforgeeks.org/namespace-in-c/

https://www.geeksforgeeks.org/namespace-in-c/

Declaring Namespaces
▪ Namespace declarations appear only

at global scope.

▪ Namespace declarations can be
nested within another namespace.

▪ Namespace declarations don’t have
access specifiers. (Public or private)

▪ No need to give semicolon after the
closing brace of definition of
namespace.

▪ We can split the definition of
namespace over several units.

31

namespace namespace_name
{
 int x, y; // code declarations where
 // x and y are declared in
 // namespace_name's scope
}

// Creating namespaces
#include <iostream>
using namespace std;
namespace ns1
{
 int value() { return 5; }
}
namespace ns2
{
 const double x = 100;
 double value() { return 2*x; }
}

int main()
{
 // Access value function within ns1
 cout << ns1::value() << '\n';

 // Access value function within ns2
 cout << ns2::value() << '\n';

 // Access variable x directly
 cout << ns2::x << '\n';

 return 0;
}

Output:
5
200
100

new / delete

▪To allocate on the heap using C++, you
use the new keyword instead of
malloc() from stdlib.h
-You can use new to allocate an object (e.g. new

Point)

-You can use new to allocate a primitive type (e.g.
new int)

▪To deallocate a heap-allocated object or
primitive, use the delete keyword
instead of free() from stdlib.h
-Don’t mix and match!

- Never free() something allocated with new

- Never delete something allocated with malloc()

- Careful if you’re using a legacy C code library or module in C++

32CSE 374 AU 20 - KASEY CHAMPION

int* AllocateInt(int x) {
 int* heapy_int = new int;
 *heapy_int = x;
 return heapy_int;
}

Point* AllocatePoint(int x, int y) {
 Point* heapy_pt = new Point(x,y);
 return heapy_pt;
}

#include "Point.h"

// definitions of AllocateInt() and AllocatePoint()

int main() {
 Point* x = AllocatePoint(1, 2);
 int* y = AllocateInt(3);

 cout << "x's x_ coord: " << x->get_x() << endl;
 cout << "y: " << y << ", *y: " << *y << endl;

 delete x;
 delete y;
 return EXIT_SUCCESS;
}

heappoint.cpp

Pointers in C++
▪Work the same as in C, hooray!

▪A pointer is a variable containing an address
-Modifying the pointer doesn’t modify what it points to, but you can access/modify what it points to by

dereferencing

33CSE 374 AU 20 - KASEY CHAMPION

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1; // sets x to 6
 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y
 *z += 1; // sets y (and *z) to 11

 return EXIT_SUCCESS;
}

References in C++
▪A reference is an alias for another variable

- Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable
- Introduced in C++ as part of the language

34CSE 374 AU 20 - KASEY CHAMPION

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6
 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y
 z += 1; // sets z (and x) to 11

 return EXIT_SUCCESS;
}

Pass by Reference

C++ allows you to use real pass-by-reference
-Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

35CSE 374 AU 20 - KASEY CHAMPION

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

▪A stylistic choice, not mandated by the
C++ language

▪Google C++ style guide suggests:
- Input parameters:

- Either use values (for primitive types like int or
small structs/objects)

- Or use const references (for complex
struct/object instances)

- Output parameters:

- Use unchangeable pointers referencing
changeable data

- Ordering:

- List input parameters first, then output
parameters last

-In C all function arguments are copies

-pointer arguments pass a copy of the
address value, original values will be
unaffected by changes to parameter

Classes in C++
▪Unlike C structs

- Class definition is part of interface and should go in .h file
- Private members still must be included in definition (!)

- Typically put member function definitions into companion .cpp file with
implementation details
- Common exception: setter and getter methods

- These files can also include non-member functions that use the class

▪Like java
- Fields & methods, static vs instance, constructors
- method overloading (functions, operators and constructors)

▪Not quite like Java
- access-modifier (eg private) syntax
- declaration separate from implementation (like C)
- funny constructor syntax, default parameters (eg, …=0)

▪Not at all like Java
- you can name files anything you want

- Typically a combination of Name.cpp and Name.h for class Name

- destructors and copy constructors
- virtual vs non-virtual

36CSE 374 AU 20 - KASEY CHAMPION

namespace mynamespace {
 class MyClass {
 private:
 type fieldOne;
 type fieldTwo;

 public:
 MyClass();
 MyClass(type, type);

 public:
 type functionOne() {
 // function definition
 }
 type functionTwo() {
 // function definition
 }
 };
}

MyClass.h

Defining Classes in C++
▪Class Definition (in a .h file)

37CSE 374 AU 20 - KASEY CHAMPION

class Name {
 public:
 // public member definitions & declarations go here

 private:
 // private member definitions & declarations go here
}; // close class Name

▪Class Member Definition (in a .cpp file)

▪Members can be functions (methods) or data (variables)

▪(1) define within the class definition OR (2) declare within the class definition and then define elsewhere

returnType ClassName::MethodName(type1 param1, …, typeN paramN) {
 // body statements
}

Name.h

Name.cpp

Anatomy of C++ Class

38CSE 374 AU 20 - KASEY CHAMPION

Rectangle.h

Constructors in C++

▪A constructor (ctor) initializes a newly-instantiated object
- A class can have multiple constructors that differ in parameters

- Which one is invoked depends on how the object is instantiated

▪Written with the class name as the method name:
Point(const int x, const int y);

- C++ will automatically create a synthesized default constructor if you have no user-defined constructors
- Takes no arguments and calls the default ctor on all non-“plain old data” (non-POD) member variables
- Synthesized default ctor will fail if you have non-initialized const or reference data members

▪4 different types of constructors
- default constructor – takes zero arguments. If you don’t define any constructors the compiler will generate one

of these for you (just like Java)
- copy constructor – takes a single parameter which is a const reference(const T&) to another object of the

same type, and initializes the fields of the new object as a copy of the fields in the referenced object
- user-defined constructors – initialize fields and take whatever arguments you specify
- conversion constructors – implicit, take a single argument. If you want a single argument constructor that is

not implicit must use the keyword “explicit” like: explicit String(const char* raw);

39CSE 374 AU 20 - KASEY CHAMPION

Class Derivation List
▪Comma-separated list of classes to inherit from:

-Focus on single inheritance, but multiple inheritance possible

▪Almost always use “public” inheritance
- Acts like extends does in Java
- Any member that is non-private in the base class is the same in the

derived class; both interface and implementation inheritance
- Except that constructors, destructors, copy constructor, and assignment operator are never

inherited

40CSE 374 AU 20 - KASEY CHAMPION

#include "BaseClass.h"

class Name : public BaseClass {
 ...
};

▪public: visible to all other classes

▪protected: visible to current class
and its derived classes

▪private: visible only to the current
class

▪Use protected for class members
only when:
- Class is designed to be extended by derived

classes

- Derived classes must have access but clients
should not be allowed

#include "BaseClass.h"
#include "BaseClass2.h"
class Name : public BaseClass, public BaseClass2 {
 ...
};

Inheritance Design Example: Stock Portfolio

 DividendStock

dividends_

GetMarketValue()
GetProfit()
GetCost()

PayDividend()

41CSE 374 AU 20 - KASEY CHAMPION

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

A derived class:

▪Inherits the behavior and state (specification) of the base class

▪Overrides some of the base class’ member functions (opt.)

▪Extends the base class with new member functions, variables (opt.)

Polymorphism in C++

▪In Java: PromisedType var = new ActualType();
-var is a reference (different term than C++ reference) to an object of ActualType on the Heap

-ActualType must be the same class or a subclass of PromisedType

▪In C++: PromisedType* var_p = new ActualType();
-var_p is a pointer to an object of ActualType on the Heap

-ActualType must be the same or a derived class of PromisedType

-(also works with references)

-PromisedType defines the interface (i.e. what can be called on var_p), but ActualType may determine which
version gets invoked

42CSE 374 AU 20 - KASEY CHAMPION

43CSE 374 AU 21 - KASEY CHAMPION

#ifndef BANKACCOUNT_H
#define BANKACCOUNT_H

#include <iostream>

namespace bank {

 class BankAccount {
 public:
 explicit BankAccount(const std::string& accountHolder);
 BankAccount(const BankAccount& other) = delete;

 // Accessors
 int getBalance() const;
 int getAccountId() const;
 const std::string& getAccountHolder() const;

 // Modifier - add money.
 void deposit(int amount);

 // different for every type of account,
 // require derived classes to implement
 virtual void withdraw(int amount) = 0;

 protected:
 // derived classes can modify the balance.
 void setBalance(int balance);

 private:
 const std::string accountHolder_;
 const int accountId_;
 int balance_;

 static int accountCount_;
 };
}
#endif

#ifndef SAVINGSACCOUNT_H
#define SAVINGSACCOUNT_H

#include "BankAccount.h"

namespace bank {

 class SavingsAccount : public BankAccount {
 public:
 SavingsAccount(double interestRate, std::string name);

 double getInterestRate() const;

 virtual void withdraw(int amount) override;

 private:
 bool isNewMonth(time_t* curTime);

 double interestRate_;
 time_t lastMonth_;
 int numTransactionsInMonth_;
 };
}

#endif

BankAccount.cc

SavingsAccount.cc

Self Check

44CSE 374 AU 20 - KASEY CHAMPION

#include <iostream>

using namespace std;

class A {
 public:
 A() { cout << "a()" << endl; }
 ~A() { cout << "~a" << endl; }
 void m1() { cout << "a1" << endl; }
 void m2() { cout << "a2" << endl; }
};

// class B inherits from class A
class B : public A {
 public:
 B() { cout << "b()" << endl; }
 ~B() { cout << "~b" << endl; }
 void m2() { cout << A::m2() << "b2" << endl; }
 void m3() { cout << "b3" << endl; }
};

int main() {
 A* x = new B();
 x->m1();
 x->m2();
 x->m3();
 delete x;
}

m1.

m2.

m3.

b()

a1

a2
b2

b3

Where does everything go?

45CSE 374 AU 20 - KASEY CHAMPION

char big_array[1L<<24]; /* 16 MB */
char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()
{
 void *p1, *p2, *p3, *p4;
 int local = 0;
 p1 = malloc(1L << 28); /* 256 MB */
 p2 = malloc(1L << 8); /* 256 B */
 p3 = malloc(1L << 32); /* 4 GB */
 p4 = malloc(1L << 8); /* 256 B */
 /* Some print statements ... */
}

Hardware Software Interface

46CSE 374 AU 20 - KASEY CHAMPION

Registers
▪A location in the CPU that stores a small amount of data, which can be accessed very quickly (once
every clock cycle)

▪Registers have names, not addresses
-In assembly, they start with % (e.g. %rsi)

▪Registers are at the heart of assembly programming
-They are a precious commodity in all architectures, but especially x86

47CSE 374 AU 20 - KASEY CHAMPION

Memory

▪Addresses (EX: 0x7FFFD024C3DC)

▪Big ~ 8 GiB

▪Slow ~50-100 ns

▪Dynamic - Can “grow” as needed
 while program runs

Registers

▪Names (EX: %rdi)

▪Small - (16 x 8 B) = 128 B

▪Fast - sub-nanosecond timescale

▪Static - fixed number in hardware

Special Registers for Intel x86-64

48CSE 374 AU 21 - KASEY CHAMPION

Assembly Instruction Basics
Assembly instructions fall into one of 3
categories:

▪Transfer data between memory and register
-Load data from memory into register

- %reg = Mem[address]

-Store register data into memory
- Mem[address] = %reg

▪Perform arithmetic operation on register or
memory data
-c = a + b; z = x << y; i = h & g;

▪Control flow: what instruction to execute next
-Unconditional jumps to/from procedures
-Conditional branches

49CSE 374 AU 20 - KASEY CHAMPION

Items in Assembly fall into one of 3 operand
categories:

▪Immediate: Constant integer data
-Examples: $0x400, $-533

-Like C literal, but prefixed with ‘$’

-Encoded with 1, 2, 4, or 8 bytes

▪Register: 1 of 16 integer registers
-Examples: %rax, %r13

▪Memory: Consecutive bytes of memory at a
computed address
-Simplest example: (%rax)

Example: Moving Data
▪General form: mov_ source, destination

-Missing letter (_) specifies size of operands
-Lots of these in typical code

Examples:

▪movb src, dst
-Move 1-byte “byte”

▪movw src, dst
-Move 2-byte “word”

▪movl src, dst
-Move 4-byte “long word”

▪movq src, dst
-Move 8-byte “quad word”

50CSE 374 AU 21 - KASEY CHAMPION

 Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax rax = 4;

Mem movq $-147, (%rax) *rax = -147;

Reg
Reg movq %rax, %rdx rdx = rax;

Mem movq %rax, (%rdx) *rdx = rax;

Mem Reg movq (%rax), %rdx rdx = *rax;

Assume we have two variables called rax and rdx.

Which assembly instruction does *rdx = rax?

movq %rdx, %rax

movq (%rdx), %rax

movq %rax, (%rdx)

movq (%rax), %rdx

* parentheses around a register dereference

Example: Arithmetic Operations

51CSE 374 AU 21 - KASEY CHAMPION

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

Assembly

C

C

Example: swap()

52CSE 374 AU 21 - KASEY CHAMPION

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

Example: swap()

53CSE 374 AU 20 - KASEY CHAMPION

123

456

Example: swap()

54CSE 374 AU 20 - KASEY CHAMPION

123

456

456

123

x86-64 Stack
▪ Region of memory managed

with stack “discipline”
- Grows toward lower addresses

- Customarily shown “upside-down”

▪ Register %rsp contains
lowest stack address
- %rsp = address of top element, the

most-recently-pushed item that is
not-yet-popped 55

Stack Pointer: %rsp

Stack “Top”

Stack “Bottom”
High
Addresses

Stack Grows
Down

Increasing
Addresses

Low
Addresses
0x00…00

x86-64 Stack: Push
▪ pushq src

- Fetch operand at src
- Src can be reg, memory, immediate

- Decrement %rsp by 8
- Store value at address given by %rsp

▪ Example:
- pushq %rcx
- Adjust %rsp and store contents of
%rcx on the stack

56

-8Stack Pointer:
%rsp

Stack “Top”

High
Addresses

Low
Addresses
0x00…00

Stack “Bottom”

Stack Grows
Down

Increasing
Addresses

Stack “Top”

x86-64 Stack: Pop
▪ popq dst

- Load value at address given by %rsp
- Store value at dst
- Increment %rsp by 8

▪ Example:
- popq %rcx
- Stores contents of top of stack

into %rcx and adjust %rsp

57

High
Addresses

Those bits are still there;
we’re just not using them.

Stack “Bottom”

Low
Addresses
0x00…00

Stack Pointer: %rsp +8

Stack Grows
Down

Increasing
Addresses

Function Pointers & Frames

▪Coded instructions are translated into
numerical values stored in memory and fed
into the processor for execution

▪function pointer – address of a function
stored in memory, pointing to the start of
the block of memory storing the set of
instructions expressed by the function.

▪stack frames - section of the stack that is
set aside for each function call
-frame pushed onto the stack when the function is

called and popped off when the function returns.

-each frame contains: arguments, return address,
pointer to last frame, local variables

58CSE 374 AU 21 - KASEY CHAMPION

Assembly example question
Consider the following x86-64 assembly instructions:
mystery:

 movl $0, %edx

 movl $0, %eax

.L3

 cmpl %esi, %edx

 jge .L1

 movslq %edx, %rcx

 addl (%rdi, %rcx, 4), %eax

 addl $1, %edx

 jmp .L3

.L1

 rep ret

59

what variable type would %rdi be in the corresponding C program?

int*

what variable type would %edx be in the corresponding C program?

int

Careers in Tech
60

Sophomore

Senior

College Career Timeline

Junior Things To Think About
What type of role and what type of company do you
want after college?

Actions to Take
Find a summer internship.

Things To Think About
What is life after college going to look like for you? How
are you going to transition from the UW into the real
world?

Actions to Take
Get that offer. Negotiate. Live your
life.

61

Freshman Things To Think About
Pay attention to what you like and don’t like.

Actions to Take
Be kind to yourself.

Things To Think About
How are you incorporating your interests into your
extracurricular activities?

Actions to Take
Take Data Structures. Find a technical
experience outside of taking class.

Pick at least one.

◉ Volunteer for a cause you care about

◉ Personal project (outside of class) to solve a
problem

◉ Author a tech blog (or a fashion blog or a cat blog)

◉ Undergraduate research

◉ Teaching Assistant/Tutor

62

◉ Create a community for your peers.

◉ Join a consulting club on campus.

◉ Programming Contests

◉ Hackathons

◉ Leadership in student organizations

◉ Get good grades (if the only thing you are doing is studying, your GPA better be super high > 3.8)

Lies people
tell you

63

Your GPA is the only thing that matters.
Bullshit.

Everyone but you knows what they’re doing.
Bullshit.

You must have a CS degree to work in tech.
Bullshit.

64

Happy Hustling!
Kim Nguyen | @hellokimwin | http://bit.ly/kimLinkedIn

Kasey Champion | @techie4good | http://bit.ly/kaseyLinkedIn

Kim’s Ultimate Resume Guide: http://bit.ly/cseresumeguide

Kim’s College Recruiting Guide for Tech Roles: http://bit.ly/csecareerguide

The typical (tech) recruiting process

Step 1 Express initial interest
Career fairs, events, or via email

Step 2 First round of the technical interview
Coding challenge, 30 - 60 minute technical screen

Step 3 Final round of interviews
In person, 3 - 6 interview rounds lasting ~60 minutes each

Step 4 Decision & offer
Good luck!

Components of a technical interview

1. Introductions

2. Project discussion

3. Coding exercise

4. Your questions

Introductions
▪ Develop your pitch

▪ Who are you?

▪ What are your interests? Goals?

▪ Why are you interested in the position?

▪ 30 seconds - 1 minute

▪ Know SOMETHING about the company and why you’re interviewing with
them

Project Discussion
▪ Pick 1-2 projects off your resume you can speak in depth about

▪ Pick your biggest or most technically interesting project

▪ It’s ok to talk about school projects

▪ Don't assume subject domain expertise, but be able to go into detail when
asked

▪ Avoid “we”

Project Discussion

▪"I spent this summer working at an advertising network, specifically
trying to drive engagement on our video ads by A/B testing new ad
content and formats. I worked primarily in the backend and used
Python and R for data analysis. I produced a 8% improvement in
click-through rates across the board over six weeks of testing."

Follow up questions:
▪ How long did you work on this project?
▪ How big was the team working on this, what was your role specifically?
▪ Why did you choose that technology stack?
▪ What was the biggest bug you encountered and how did you fix it?
▪ If you redid the project what would you do differently?

Coding Exercise - Before

Practice Practice Practice

▪ Treat the interview like a standardized test

▪ Practice coding without an
IDE/Compiler/Computer

▪ Practice coding and talking aloud at the
same time

▪ Essential Practice Resources:
▪ Cracking the Coding Interview

▪ LeetCode

▪ Data Structures and Algorithms (edX
course)

Picking Your Language

▪ Strongly recommended: Pick something
OOP

▪ Syntax typically doesn’t matter

▪ Review helpful APIs
▪ String -> Int

▪ String manipulation

▪ Popular data structures

▪ Searching and Sorting algorithms

▪ Be able to talk about why you picked that
language

https://www.amazon.com/Cracking-Coding-Interview-Programming-Questions/dp/0984782850/ref=sr_1_2?ie=UTF8&qid=1539724383&sr=8-2&keywords=cracking+the+coding+interview
http://leetcode.com/
https://www.edx.org/course/algorithms-and-data-structures-1
https://www.edx.org/course/algorithms-and-data-structures-1

Coding Exercise – In the Interview

Question Patterns

▪ String or Array manipulation - Great for tech
screens, shorter, sometimes mathy

▪ Linked Lists - Often used in whiteboard interviews
because they expect you to draw pictures

▪ Trees – BSTs, self balancing. Often used when
building up directories or searching for something
ie phone trees

▪ Sorting & Heaps -

▪ Hash Tables - If you are organizing data for
lookups… chances are the answer is a hash table

Structure Your Thoughts

▪ Talk - clarify the question

▪ Example - talk through sample input and expected
output

▪ Brute Force - what is the simplest way to solve this?

▪ Optimize - can you save run time or memory?

▪ Walk Through - clarify your algorithm

▪ Implement - write the code!

▪ Test - list test cases, does your code address these?

Nervous during your technical coding interview? TEBOW IT!

https://www.linkedin.com/pulse/nervous-during-your-technical-coding-interview-tebow-sarpangal/

Your Questions

▪ Don’t drop the ball!
▪ You better have some questions
▪ “What is your favorite part about working for X?”

▪ “What are some projects you’ve worked on at X?”

▪ “Where do you see X in 5 years?”

▪ Don’t ask rude questions
▪ “Did I pass?”

▪ “How much do you make?”

▪ Show your interest

▪ Actually look for a good fit

Questions

74CSE 374 AU 20 - KASEY CHAMPION

