
Lecture 28: Concurrency
Continued…

CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #28

Log onto pollev.com/cse374

Or

Text CSE374 to 22333

http://pollev.com/cse374
http://pollev.com/cse374

Administrivia

HW 5 (final HW) posted

Final review assignment posted!

End of quarter due date Wednesday December 16th @ 9pm

2 CSE 374 AU 20 - KASEY CHAMPION

Concurrency vs Parallelism

parallelism refers to running things simultaneously on separate resources (ex.
Separate CPUs)

concurrency refers to running multiple threads on a shared resources

Concurrency is one person cooking multiple dishes at the same time.

Parallelism is having multiple people (possibly cooking the same dish).

Allows processes to run ‘in the background’
Responsiveness – allow GUI to respond while computation happens

CPU utilization – allow CPU to compute while waiting (waiting for data, for input)

isolation – keep threads separate so errors in one don’t affect the others

3 CSE 374 AU 20 - KASEY CHAMPION

Concurrency

4 CSE 374 AU 20 - KASEY CHAMPION

A search engine could run concurrently:
- Example: Execute queries one at a time,
but issue I/O requests against different
files/disks simultaneously

- Could read from several index files
at once, processing the I/O results
as they arrive

- Example: Web server could execute
multiple queries at the same time

- While one is waiting for I/O,
another can be executing on the
CPU

Use multiple “workers”
- As a query arrives, create a new “worker” to handle
it

- The “worker” reads the query from the network,
issues read requests against files, assembles results
and writes to the network

- The “worker” uses blocking I/O; the “worker”
alternates between consuming CPU cycles and
blocking on I/O

- The OS context switches between “workers”
- While one is blocked on I/O, another can use the
CPU

- Multiple “workers’” I/O requests can be issued at
once

- So what should we use for our “workers”?

Threads

In most modern OS’s threads are the unit of scheduling.
- Separate the concept of a process from the “thread of execution”
- Threads are contained within a process
- Usually called a thread, this is a sequential execution stream within a process

Cohabit the same address space
- Threads within a process see the same heap and globals and can communicate with each other through variables and memory
- Each thread has its own stack
- But, they can interfere with each other – need synchronization for shared resources

Advantages:
- They execute concurrently like processes
- You (mostly) write sequential-looking code
- Threads can run in parallel if you have multiple CPUs/cores

Disadvantages:
- If threads share data, you need locks or other synchronization

- Very bug-prone and difficult to debug

- Threads can introduce overhead
- Lock contention, context switch overhead, and other issues

- Need language support for threads

5 CSE 374 AU 20 - KASEY CHAMPION

A Process has a unique: address space, OS resources, and

security attributes

A Thread has a unique: stack, stack pointer, program

counter, and registers

Threads are the unit of scheduling and processes are their

containers; every process has at least one thread running

in it

Address Spaces

Before creating a
thread
- One thread of execution

running in the address space
- One PC, stack, SP

- That main thread invokes a
function to create a new
thread

 -> pthread_create() ->

6 CSE 374 AU 20 - KASEY CHAMPION

After creating a thread
- Two threads of execution

running in the address space
- Original thread (parent) and new

thread (child)

- New stack created for child thread

- Child thread has its own values of
the PC and SP

- Both threads share the other
segments (code, heap,
globals)
- They can cooperatively modify

shared data

Single threaded address space Multi-threaded address space

POSIX Threads and Pthread functions

 The POSIX APIs for dealing with threads
- Declared in pthread.h

- Not part of the C/C++ language (cf. Java)

- To enable support for multithreading, must include -pthread flag when compiling and linking with gcc command
- POSIX stands for Portable Operating System Interface, pthread conforms to POSIX standard for

threading

gcc –g –Wall –std=c11 –pthread –o main main.c
Example Usage

- pthread_t thread ID;
- the threadID keeps track of to which thread we are referring

- pthread_create takes a function plinter and arguments to trigger separate thread
- int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start routing) (void*), void
*arg);

- note – pthread_create takes two generic (untyped) pointers

- interprets the first as a function pointer and the second as an argument pointer

- int pthread_join(pthread_t thread, void **value_ptr);
- puts calling thread ‘on hold’ until ‘thread’ completes – useful for waiting to thread to exit

7 CSE 374 AU 20 - KASEY CHAMPION https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Creating and Terminating Threads

- Creates a new thread into *thread, with attributes *attr (NULL means default attributes)

- Returns 0 on success and an error number on error (can check against error constants)

- The new thread runs start_routine(arg)

- Equivalent of exit(retval); for a thread instead of a process

- The thread will automatically exit once it returns from start_routine()

8 CSE 374 AU 20 - KASEY CHAMPION

int pthread_create(

 pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

void pthread_exit(void* retval);

Multi Threaded Example

9 CSE 374 AU 20 - KASEY CHAMPION

void do_wrap_up(int one_times, int another_times) {

 int total;

 total = one_times + another_times; printf("All done,

 one thing %d, another %d for a total of

 %d\n", one_times, another_times, total);

}

#include <stdio.h>

#include <pthread.h>

void do_one_thing(int *);

void do_another_thing(int *);

void do_wrap_up(int, int);

int main() {

 pthread_t thread1, thread2;

 int r1 = 0, r2 = 0;

 pthread_create(&thread1, NULL, (void *) do_one_thing, (void *) &r1);

 pthread_create(&thread2, NULL, (void *) do_another_thing, (void *) &r2);

 pthread_join(thread1, NULL);

 pthread_join(thread2, NULL);

 do_wrap_up(r1, r2);

}

void do_one_thing(int *pnum_times) {

 int i, j, x;

 for (i = 0; i < 4; i++) {

 printf("doing one thing\n");

 for (j = 0; j < 10000; j++) x = x + i;

 (*pnum_times)++;

 }

}

void do_another_thing(int *pnum_times) {

 int i, j, x;

 for (i = 0; i < 4; i++) {

 printf("doing another \n");

 for (j = 0; j < 10000; j++) x = x + i;

 (*pnum_times)++;

 }

}

Parallel Processing

common pattern for expensive computations (such as data processing)

1. split up the work, give each piece to a thread (fork)

2. wait until all are done, then combine answers (join)

to avoid bottlenecks, each thread should have about the same about of work

performance will always be less than perfect speedup

what about when all threads need access to the same mutable memory?

10 CSE 374 AU 20 - KASEY CHAMPION

After forking threads

- Waits for the thread specified by thread to terminate

- The thread equivalent of waitpid()

- The exit status of the terminated thread is placed in *retval

- Mark thread specified by thread as detached – it will clean up its resources as soon as it terminates

11 CSE 374 AU 20 - KASEY CHAMPION

int pthread_join(pthread_t thread, void** retval);

int pthread_detach(pthread_t thread);

Race Conditions

A race condition happens when the result of a computation depends upon
scheduling of multiple threads, ie the order in which the processor executes
instructions.

Bad interleavings is when the code exposes bad intermediate state.
- example: the getBalance() -> setBalance() calls exposed intermediate state.

- Bad interleavings are incorrect from the programmatic logical perspective:

- in the bank example, we lost money or allowed balances to go below 0.

Data races - Even if we can't have a line-by-line interleaving, we can still have race
conditions
- what seems like an "atomic" operation, like setting "balance_ = amount" or "return balance_", is
actually NOT guaranteed to be an atomic operation at the compiled machine-code level.

12 CSE 374 AU 20 - KASEY CHAMPION

whenever you have the potential to read+write or write+write on different threads, you MUST synchronize access

to the shared memory (with a lock or similar).

Data Races

Two memory accesses form a data race if different threads access the same location, and at
least one is a write, and they occur one after another
- Means that the result of a program can vary depending on chance (which thread ran first?)

Data races might interfere in painful, non-obvious ways, depending on the specifics of the
data structure

Example: two threads try to read from and write to the same shared memory location
- Could get “correct” answer
- Could accidentally read old value

- One thread’s work could get “lost”

Example: two threads try to push an item onto the head of the linked list at the same time
- Could get “correct” answer
- Could get different ordering of items

- Could break the data structure!

13 CSE 374 AU 20 - KASEY CHAMPION

A Data Race
two threads are running at the same time, and therefore, because we cannot guarantee the
exact speed at which each thread runs, we could get into a bad situation

14 CSE 374 AU 20 - KASEY CHAMPION

have a bank account x with a balance
of $150

thread T1 calls x.withdrawal(100) and
thread T2 calls x.withdrawal(100) right
afterwards
- two transactions are attempting to happen

on the same account
- what SHOULD happen is that one of the

transactions succeeds in withdrawing 100,
and the other throws an exception because
the remaining balance of $50 is insufficient

T1 reads the balance (150) and stores
it in variable b

T2 executes completely, deducting
100 from the account to leave a
balance of 50

rest of the function on T1 executes,
comparing 150 with 100 (ok) and then
setting the balance to $50

We've lost a transaction!
https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html

https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html
https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html
https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html
https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html
https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html

Synchronization

Synchronization is the act of preventing two (or more) concurrently running threads
from interfering with each other when operating on shared data
- Need some mechanism to coordinate the threads

- “Let me go first, then you can go”
- Many different coordination mechanisms have been invented

Goals of synchronization:
- Liveness – ability to execute in a timely manner

(informally, “something good happens”)
- Safety – avoid unintended interactions with shared data structures (informally, “nothing bad happens”)

15 CSE 374 AU 20 - KASEY CHAMPION

Lock Synchronization

Use a “Lock” to grant access to a critical section so that only one thread can operate
there at a time
- Executed in an uninterruptible

- an operation we want to be done all at once

- operation must be the right size (atomic unit)
- too big program runs sequentially

- too small program has data races

Lock Acquire
- Wait until the lock is free,

then take it

Lock Release
- Release the lock

- If other threads are waiting, wake exactly one up to pass lock to

16 CSE 374 AU 20 - KASEY CHAMPION

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

loop/idle

if locked

Example

If your fridge has no milk,
then go out and buy some more
- What could go wrong?

If you live alone:

If you live with a roommate:

17 CSE 374 AU 20 - KASEY CHAMPION

What if we use a lock on the
refrigerator?
- Probably overkill – what if

roommate wanted to get eggs?

For performance reasons, only
put what is necessary in the
critical section
- Only lock the milk

- But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

fridge.lock()

if (!milk) {

 buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

 buy milk

}

milk_lock.unlock()

pthreads and Locks

Another term for a lock is a mutex (“mutual exclusion”)
- pthread.h defines datatype pthread_mutex_t

pthread_mutex_init()

- Initializes a mutex with specified attributes

pthread_mutex_lock()
- Acquire the lock – blocks if already locked

pthread_mutex_unlock()
- Releases the lock

 pthread_mutex_destroy()
- “Uninitializes” a mutex – clean up when done

18 CSE 374 AU 20 - KASEY CHAMPION

int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Synchronization Example

https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThr
ead.h

https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThr
ead.cpp

20 CSE 374 AU 20 - KASEY CHAMPION

https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.h
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.h
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.cpp
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.cpp

Questions

22 CSE 374 AU 20 - KASEY CHAMPION

