
Lecture 28: Concurrency
Continued…

CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #28

Log onto pollev.com/cse374

Or

Text CSE374 to 22333

http://pollev.com/cse374
http://pollev.com/cse374

Administrivia

HW 5 (final HW) posted

Final review assignment posted!

End of quarter due date Wednesday December 16th @ 9pm

2 CSE 374 AU 20 - KASEY CHAMPION

Concurrency vs Parallelism

parallelism refers to running things simultaneously on separate resources (ex.
Separate CPUs)

concurrency refers to running multiple threads on a shared resources

Concurrency is one person cooking multiple dishes at the same time.

Parallelism is having multiple people (possibly cooking the same dish).

Allows processes to run ‘in the background’
Responsiveness – allow GUI to respond while computation happens

CPU utilization – allow CPU to compute while waiting (waiting for data, for input)

isolation – keep threads separate so errors in one don’t affect the others

3 CSE 374 AU 20 - KASEY CHAMPION

Concurrency

4 CSE 374 AU 20 - KASEY CHAMPION

A search engine could run concurrently:
- Example: Execute queries one at a time,
but issue I/O requests against different
files/disks simultaneously

- Could read from several index files
at once, processing the I/O results
as they arrive

- Example: Web server could execute
multiple queries at the same time

- While one is waiting for I/O,
another can be executing on the
CPU

Use multiple “workers”
- As a query arrives, create a new “worker” to handle
it

- The “worker” reads the query from the network,
issues read requests against files, assembles results
and writes to the network

- The “worker” uses blocking I/O; the “worker”
alternates between consuming CPU cycles and
blocking on I/O

- The OS context switches between “workers”
- While one is blocked on I/O, another can use the
CPU

- Multiple “workers’” I/O requests can be issued at
once

- So what should we use for our “workers”?

Threads

In most modern OS’s threads are the unit of scheduling.
- Separate the concept of a process from the “thread of execution”
- Threads are contained within a process
- Usually called a thread, this is a sequential execution stream within a process

Cohabit the same address space
- Threads within a process see the same heap and globals and can communicate with each other through variables and memory
- Each thread has its own stack
- But, they can interfere with each other – need synchronization for shared resources

Advantages:
- They execute concurrently like processes
- You (mostly) write sequential-looking code
- Threads can run in parallel if you have multiple CPUs/cores

Disadvantages:
- If threads share data, you need locks or other synchronization

- Very bug-prone and difficult to debug

- Threads can introduce overhead
- Lock contention, context switch overhead, and other issues

- Need language support for threads

5 CSE 374 AU 20 - KASEY CHAMPION

A Process has a unique: address space, OS resources, and

security attributes

A Thread has a unique: stack, stack pointer, program

counter, and registers

Threads are the unit of scheduling and processes are their

containers; every process has at least one thread running

in it

Address Spaces

Before creating a
thread
- One thread of execution

running in the address space
- One PC, stack, SP

- That main thread invokes a
function to create a new
thread

 -> pthread_create() ->

6 CSE 374 AU 20 - KASEY CHAMPION

After creating a thread
- Two threads of execution

running in the address space
- Original thread (parent) and new

thread (child)

- New stack created for child thread

- Child thread has its own values of
the PC and SP

- Both threads share the other
segments (code, heap,
globals)
- They can cooperatively modify

shared data

Single threaded address space Multi-threaded address space

POSIX Threads and Pthread functions

 The POSIX APIs for dealing with threads
- Declared in pthread.h

- Not part of the C/C++ language (cf. Java)

- To enable support for multithreading, must include -pthread flag when compiling and linking with gcc command
- POSIX stands for Portable Operating System Interface, pthread conforms to POSIX standard for

threading

gcc –g –Wall –std=c11 –pthread –o main main.c
Example Usage

- pthread_t thread ID;
- the threadID keeps track of to which thread we are referring

- pthread_create takes a function plinter and arguments to trigger separate thread
- int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start routing) (void*), void
*arg);

- note – pthread_create takes two generic (untyped) pointers

- interprets the first as a function pointer and the second as an argument pointer

- int pthread_join(pthread_t thread, void **value_ptr);
- puts calling thread ‘on hold’ until ‘thread’ completes – useful for waiting to thread to exit

7 CSE 374 AU 20 - KASEY CHAMPION https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Creating and Terminating Threads

- Creates a new thread into *thread, with attributes *attr (NULL means default attributes)

- Returns 0 on success and an error number on error (can check against error constants)

- The new thread runs start_routine(arg)

- Equivalent of exit(retval); for a thread instead of a process

- The thread will automatically exit once it returns from start_routine()

8 CSE 374 AU 20 - KASEY CHAMPION

int pthread_create(

 pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

void pthread_exit(void* retval);

Multi Threaded Example

9 CSE 374 AU 20 - KASEY CHAMPION

void do_wrap_up(int one_times, int another_times) {

 int total;

 total = one_times + another_times; printf("All done,

 one thing %d, another %d for a total of

 %d\n", one_times, another_times, total);

}

#include <stdio.h>

#include <pthread.h>

void do_one_thing(int *);

void do_another_thing(int *);

void do_wrap_up(int, int);

int main() {

 pthread_t thread1, thread2;

 int r1 = 0, r2 = 0;

 pthread_create(&thread1, NULL, (void *) do_one_thing, (void *) &r1);

 pthread_create(&thread2, NULL, (void *) do_another_thing, (void *) &r2);

 pthread_join(thread1, NULL);

 pthread_join(thread2, NULL);

 do_wrap_up(r1, r2);

}

void do_one_thing(int *pnum_times) {

 int i, j, x;

 for (i = 0; i < 4; i++) {

 printf("doing one thing\n");

 for (j = 0; j < 10000; j++) x = x + i;

 (*pnum_times)++;

 }

}

void do_another_thing(int *pnum_times) {

 int i, j, x;

 for (i = 0; i < 4; i++) {

 printf("doing another \n");

 for (j = 0; j < 10000; j++) x = x + i;

 (*pnum_times)++;

 }

}

Parallel Processing

common pattern for expensive computations (such as data processing)

1. split up the work, give each piece to a thread (fork)

2. wait until all are done, then combine answers (join)

to avoid bottlenecks, each thread should have about the same about of work

performance will always be less than perfect speedup

what about when all threads need access to the same mutable memory?

10 CSE 374 AU 20 - KASEY CHAMPION

After forking threads

- Waits for the thread specified by thread to terminate

- The thread equivalent of waitpid()

- The exit status of the terminated thread is placed in *retval

- Mark thread specified by thread as detached – it will clean up its resources as soon as it terminates

11 CSE 374 AU 20 - KASEY CHAMPION

int pthread_join(pthread_t thread, void** retval);

int pthread_detach(pthread_t thread);

Race Conditions

A race condition happens when the result of a computation depends upon
scheduling of multiple threads, ie the order in which the processor executes
instructions.

Bad interleavings is when the code exposes bad intermediate state.
- example: the getBalance() -> setBalance() calls exposed intermediate state.

- Bad interleavings are incorrect from the programmatic logical perspective:

- in the bank example, we lost money or allowed balances to go below 0.

Data races - Even if we can't have a line-by-line interleaving, we can still have race
conditions
- what seems like an "atomic" operation, like setting "balance_ = amount" or "return balance_", is
actually NOT guaranteed to be an atomic operation at the compiled machine-code level.

12 CSE 374 AU 20 - KASEY CHAMPION

whenever you have the potential to read+write or write+write on different threads, you MUST synchronize access

to the shared memory (with a lock or similar).

Data Races

Two memory accesses form a data race if different threads access the same location, and at
least one is a write, and they occur one after another
- Means that the result of a program can vary depending on chance (which thread ran first?)

Data races might interfere in painful, non-obvious ways, depending on the specifics of the
data structure

Example: two threads try to read from and write to the same shared memory location
- Could get “correct” answer
- Could accidentally read old value

- One thread’s work could get “lost”

Example: two threads try to push an item onto the head of the linked list at the same time
- Could get “correct” answer
- Could get different ordering of items

- Could break the data structure!

13 CSE 374 AU 20 - KASEY CHAMPION

A Data Race
two threads are running at the same time, and therefore, because we cannot guarantee the
exact speed at which each thread runs, we could get into a bad situation

14 CSE 374 AU 20 - KASEY CHAMPION

have a bank account x with a balance
of $150

thread T1 calls x.withdrawal(100) and
thread T2 calls x.withdrawal(100) right
afterwards
- two transactions are attempting to happen

on the same account
- what SHOULD happen is that one of the

transactions succeeds in withdrawing 100,
and the other throws an exception because
the remaining balance of $50 is insufficient

T1 reads the balance (150) and stores
it in variable b

T2 executes completely, deducting
100 from the account to leave a
balance of 50

rest of the function on T1 executes,
comparing 150 with 100 (ok) and then
setting the balance to $50

We've lost a transaction!
https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html

https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html
https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html
https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html
https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html
https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html

Synchronization

Synchronization is the act of preventing two (or more) concurrently running threads
from interfering with each other when operating on shared data
- Need some mechanism to coordinate the threads

- “Let me go first, then you can go”
- Many different coordination mechanisms have been invented

Goals of synchronization:
- Liveness – ability to execute in a timely manner

(informally, “something good happens”)
- Safety – avoid unintended interactions with shared data structures (informally, “nothing bad happens”)

15 CSE 374 AU 20 - KASEY CHAMPION

Lock Synchronization

Use a “Lock” to grant access to a critical section so that only one thread can operate
there at a time
- Executed in an uninterruptible

- an operation we want to be done all at once

- operation must be the right size (atomic unit)
- too big program runs sequentially

- too small program has data races

Lock Acquire
- Wait until the lock is free,

then take it

Lock Release
- Release the lock

- If other threads are waiting, wake exactly one up to pass lock to

16 CSE 374 AU 20 - KASEY CHAMPION

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

loop/idle

if locked

Example

If your fridge has no milk,
then go out and buy some more
- What could go wrong?

If you live alone:

If you live with a roommate:

17 CSE 374 AU 20 - KASEY CHAMPION

What if we use a lock on the
refrigerator?
- Probably overkill – what if

roommate wanted to get eggs?

For performance reasons, only
put what is necessary in the
critical section
- Only lock the milk

- But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

fridge.lock()

if (!milk) {

 buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

 buy milk

}

milk_lock.unlock()

pthreads and Locks

Another term for a lock is a mutex (“mutual exclusion”)
- pthread.h defines datatype pthread_mutex_t

pthread_mutex_init()

- Initializes a mutex with specified attributes

pthread_mutex_lock()
- Acquire the lock – blocks if already locked

pthread_mutex_unlock()
- Releases the lock

 pthread_mutex_destroy()
- “Uninitializes” a mutex – clean up when done

18 CSE 374 AU 20 - KASEY CHAMPION

int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Synchronization Example

https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThr
ead.h

https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThr
ead.cpp

20 CSE 374 AU 20 - KASEY CHAMPION

https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.h
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.h
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.cpp
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.cpp

Questions

22 CSE 374 AU 20 - KASEY CHAMPION

