
Lecture 27: Concurrency
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #27

Log onto pollev.com/cse374

Or

Text CSE374 to 22333

http://pollev.com/cse374
http://pollev.com/cse374

Administrivia

HW 5 (final HW) posted

Final review assignment coming

End of quarter due date Wednesday December 16th @ 9pm

2 CSE 374 AU 20 - KASEY CHAMPION

Malicious Buffer Overflow – Code Injection

Buffer overflow bugs can allow
attackers to execute arbitrary code on
victim machines
- Distressingly common in real programs

Input string contains byte
representation of executable code

Overwrite return address A with
address of buffer B

When bar() executes ret, will jump to
exploit code

3 CSE 374 AU 20 - KASEY CHAMPION

void foo(){

 bar();

A:...

}

int bar() {

 char buf[64];

 gets(buf);

 ...

 return ...;

}

return address A

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-

ever/

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/

Change return to last frame

4 CSE 374 AU 20 - KASEY CHAMPION

void bufferplay (int a, int b, int c) {

 char buffer1[5];

 uintptr_t ret; //holds an address

 //calculate the address of the return pointer

 ret = (uintptr_t) buffer1 + 0; //change to be address of return

 //treat that number like a pointer,

 //and change the value in it

 ((uintptr_t)ret) += 0; //change to add how much to advance

}

int main(int argc, char** argv) {

 int x;

 x = 0;

 printf("before: %d\n",x);

 bufferplay (1,2,3);

 x = 1; // want to skip this line

 printf("after: %d\n",x);

 return 0;

}

Skip the line "x = 1;" in the main function by
modifying function's return address.
- Identify where the return address is in relation to the local

variable buffer1

- Figure out how many bytes the actual compiled C
instruction "x=1;" takes, so that we can increment by that
many bytes

Use GDB
- break function

- break right at beginning of function execution

- x buffer1
- prints the location of buffer1

- info frame
- "rip" will hold the location of the return address

- print <rip-location> - <buffer1-location>
- prints the number of bytes between buffer1 and rip

- disassemble main
- shows the machine code and how many bytes each instruction takes up.

- We identify the line that calls function, then see that the next // instruction
moves 1 into x. That instruction takes 7 bytes, so we

- have now found the second number!

Trigger malicious program

5 CSE 374 AU 20 - KASEY CHAMPION

int bar(char *arg, char *out) {

 strcpy(out, arg);

 return 0;

}

void foo(char *argv[]) {

 char buf[256];

 bar(argv[1], buf);

}

int main(int argc, char *argv[]) {

 if (argc != 2) {

 fprintf(stderr, "target1: argc != 2\n");

 exit(1);

 }

 foo(argv);

 return 0;

}

Victim Program

int main(void) {

char *args[3];

char *env[1];

args[0] = "/tmp/target";

args[2] = NULL;

env[0] = NULL;

args[1] = (char*) malloc(sizeof(char)*265);

memset(args[1], 0x90, 264);

// Null-terminate the string.

args[1][264] = '\0’;

// Add in the attack code to the front of the

argument. memcpy(args[1], shellcode,

strlen(shellcode));

(uintptr_t)(args[1] + 264) = 0x7fffffffdb90;

// call the victim program.

execve("/tmp/target", args, env); }

used gdb - there are 264 bytes between
buf and return address, so we malloc
space for 264, characters plus one for
the null terminator.

set the memory to a value to
ensure no null-termination in string
before final character.
0x90 is also a byte that means "no-
op" in terms of byte instructions.

Store address of buf at
appropriate location in
string

Attacker Program

Hack – Internet Worm

Original “Internet worm” (1988)
Exploited vulnerability in gets() method used in
Finger protocol
- Worm attacked fingerd server with phony argument

- finger "exploit-code padding new-return-addr"

- Exploit code: executed a root shell on the victim machine with a direct
connection to the attacker

Worm spread from machine to machine
automatically
- denial of service attack – flood machine with so many requests it

is overloaded and unavailable to its intended users

- took down 6000 machines, took days to get machine back online

- government estimated damage $100,000 to $10,000,000

Written by Robert Morris while a grad student at
Cornell, but launched it from the MIT computer
system
- meant to be an intellectual experiment, but made it too

damaging by accident

- Now a professor at MIT, first person convicted under the ‘86
Computer Fraud and Abuse Act

6 CSE 374 AU 20 - KASEY CHAMPION

Hack - Heartbleed

Buffer over-read in Open-Source Security
Library
- when program reads beyond end of intended data from a

buffer and reads

maliciously designed input - “Heartbeat” packet
sent out
- Specifies length of message and server echoes it back

- Library just “trusted” this length

- Allowed attackers to read contents of memory anywhere they
wanted

Est. 17% of internet affected
- Similar issue in Cloudbleed (2017)

7 CSE 374 AU 20 - KASEY CHAMPION

Protect Your Code!

Employ system-level protections
- Code on the Stack is not executable

- Randomized Stack offsets

Avoid overflow vulnerabilities
- Use library routines that limit string lengths

- Use a language that makes them impossible

Have compiler use “stack canaries”
- place special value (“canary”) on stack just beyond buffer

8 CSE 374 AU 20 - KASEY CHAMPION

System Level Protections

Non-executable code segments

In traditional x86, can mark region of
memory as either “read-only” or “writeable”
- Can execute anything readable

x86-64 added explicit “execute” permission

Stack marked as non-executable
- Do NOT execute code in Stack, Static Data, or Heap

regions

- Hardware support needed

9 CSE 374 AU 20 - KASEY CHAMPION

System Level Protections

Many embedded devices do not have
feature to mark code as “non-executable”
- Cars

- Smart homes

- Pacemakers

Randomized stack offsets
- At start of program, allocate random amount of

space on stack

- Shifts stack addresses for entire program
- Addresses will vary from one run to another

- Makes it difficult for hacker to predict beginning
of inserted code

10 CSE 374 AU 20 - KASEY CHAMPION

Avoid Overflow Vulnerabilities

Use library routines that limit string lengths
- fgets instead of gets (2nd argument to fgets sets limit)

- strncpy instead of strcpy

- Don’t use scanf with %s conversion specification
- Use fgets to read the string

- Or use %ns where n is a suitable integer

Or… don’t use C - use a language that does array index bounds check
- Buffer overflow is impossible in Java

- ArrayIndexOutOfBoundsException

- Rust language was designed with security in mind
- Panics on index out of bounds, plus more protections

11 CSE 374 AU 20 - KASEY CHAMPION

/* Echo Line */

void echo()

{

 char buf[8]; /* Way too small! */

 fgets(buf, 8, stdin);

 puts(buf);

}

Stack Canaries

Basic Idea: place special value (“canary”) on stack just beyond buffer
- Secret value that is randomized before main()

- Placed between buffer and return address

- Check for corruption before exiting function

GCC implementation
- -fstack-protector

12 CSE 374 AU 20 - KASEY CHAMPION

unix>./buf

Enter string: 12345678

12345678

unix> ./buf

Enter string: 123456789

*** stack smashing detected ***

Sequential Programming

Only one query is being processed at a time
- All other queries queue up behind the first one
- And clients queue up behind the queries …
- what we’ve been doing so far
- sequential programming demands finishing one sequence before starting the next one

Even while processing one query, the CPU is idle the vast majority of the time
- It is blocked waiting for I/O to complete

- Disk I/O can be very, very slow (10 million times slower …)

At most one I/O operation is in flight at a time
- Missed opportunities to speed I/O up

- Separate devices in parallel, better scheduling of a single device, etc.

- performance improvements can only be made by improving hardware

- Moore’s Law

13 CSE 374 AU 20 - KASEY CHAMPION

Concurrency vs Parallelism

parallelism refers to running things simultaneously on separate resources (ex.
Separate CPUs)

concurrency refers to running multiple threads on a shared resources

Concurrency is one person cooking multiple dishes at the same time.

Parallelism is having multiple people (possibly cooking the same dish).

Allows processes to run ‘in the background’
Responsiveness – allow GUI to respond while computation happens

CPU utilization – allow CPU to compute while waiting (waiting for data, for input)

isolation – keep threads separate so errors in one don’t affect the others

14 CSE 374 AU 20 - KASEY CHAMPION

Concurrency

15 CSE 374 AU 20 - KASEY CHAMPION

A search engine could run concurrently:
- Example: Execute queries one at a time,
but issue I/O requests against different
files/disks simultaneously

- Could read from several index files
at once, processing the I/O results
as they arrive

- Example: Web server could execute
multiple queries at the same time

- While one is waiting for I/O,
another can be executing on the
CPU

Use multiple “workers”
- As a query arrives, create a new “worker” to handle
it

- The “worker” reads the query from the network,
issues read requests against files, assembles results
and writes to the network

- The “worker” uses blocking I/O; the “worker”
alternates between consuming CPU cycles and
blocking on I/O

- The OS context switches between “workers”
- While one is blocked on I/O, another can use the
CPU

- Multiple “workers’” I/O requests can be issued at
once

- So what should we use for our “workers”?

Threads

In most modern OS’s threads are the unit of scheduling.
- Separate the concept of a process from the “thread of execution”
- Threads are contained within a process
- Usually called a thread, this is a sequential execution stream within a process

Cohabit the same address space
- Threads within a process see the same heap and globals and can communicate with each other through variables and memory
- Each thread has its own stack
- But, they can interfere with each other – need synchronization for shared resources

Advantages:
- They execute concurrently like processes
- You (mostly) write sequential-looking code
- Threads can run in parallel if you have multiple CPUs/cores

Disadvantages:
- If threads share data, you need locks or other synchronization

- Very bug-prone and difficult to debug

- Threads can introduce overhead
- Lock contention, context switch overhead, and other issues

- Need language support for threads

16 CSE 374 AU 20 - KASEY CHAMPION

A Process has a unique: address space, OS resources, and

security attributes

A Thread has a unique: stack, stack pointer, program

counter, and registers

Threads are the unit of scheduling and processes are their

containers; every process has at least one thread running

in it

Address Spaces

Single threaded
address space

Before creating a
thread
- One thread of execution

running in the address space
- One PC, stack, SP

- That main thread invokes a
function to create a new
thread

Typically
pthread_create()

17 CSE 374 AU 20 - KASEY CHAMPION

Multi-threaded
address space

After creating a thread
- Two threads of execution

running in the address space
- Original thread (parent) and new

thread (child)

- New stack created for child thread

- Child thread has its own values of
the PC and SP

- Both threads share the other
segments (code, heap,
globals)
- They can cooperatively modify

shared data

Creating and Terminating Threads

- Creates a new thread into *thread, with attributes *attr (NULL means default attributes)

- Returns 0 on success and an error number on error (can check against error constants)

- The new thread runs start_routine(arg)

- Equivalent of exit(retval); for a thread instead of a process

- The thread will automatically exit once it returns from start_routine()

19 CSE 374 AU 20 - KASEY CHAMPION

int pthread_create(

 pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

void pthread_exit(void* retval);

After forking threads

- Waits for the thread specified by thread to terminate

- The thread equivalent of waitpid()

- The exit status of the terminated thread is placed in *retval

- Mark thread specified by thread as detached – it will clean up its resources as soon as it terminates

20 CSE 374 AU 20 - KASEY CHAMPION

int pthread_join(pthread_t thread, void** retval);

int pthread_detach(pthread_t thread);

POSIX Threads and Pthread functions

 The POSIX APIs for dealing with threads
- Declared in pthread.h

- Not part of the C/C++ language (cf. Java)

- To enable support for multithreading, must include -pthread flag when compiling and linking with gcc command
- POSIX stands for Portable Operating System Interface, pthread conforms to POSIX standard for

threading

gcc –g –Wall –std=c11 –pthread –o main main.c
Example Usage

- pthread_t thread ID;
- the threadID keeps track of to which thread we are referring

- pthread_create takes a function plinter and arguments to trigger separate thread
- int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start routing) (void*), void
*arg);

- note – pthread_create takes two generic (untyped) pointers

- interprets the first as a function pointer and the second as an argument pointer

- int pthread_join(pthread_t thread, void **value_ptr);
- puts calling thread ‘on hold’ until ‘thread’ completes – useful for waiting to thread to exit

21 CSE 374 AU 20 - KASEY CHAMPION https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Data Races

Two memory accesses form a data race if different threads access the same location, and at
least one is a write, and they occur one after another
- Means that the result of a program can vary depending on chance (which thread ran first?)

Data races might interfere in painful, non-obvious ways, depending on the specifics of the
data structure

Example: two threads try to read from and write to the same shared memory location
- Could get “correct” answer
- Could accidentally read old value

- One thread’s work could get “lost”

Example: two threads try to push an item onto the head of the linked list at the same time
- Could get “correct” answer
- Could get different ordering of items

- Could break the data structure!

22 CSE 374 AU 20 - KASEY CHAMPION

Synchronization

Synchronization is the act of preventing two (or more) concurrently running threads
from interfering with each other when operating on shared data
- Need some mechanism to coordinate the threads

- “Let me go first, then you can go”
- Many different coordination mechanisms have been invented

Goals of synchronization:
- Liveness – ability to execute in a timely manner

(informally, “something good happens”)
- Safety – avoid unintended interactions with shared data structures (informally, “nothing bad happens”)

23 CSE 374 AU 20 - KASEY CHAMPION

Lock Synchronization

Use a “Lock” to grant access to a critical section so that only one thread can operate
there at a time
- Executed in an uninterruptible (i.e. atomic) manner

Lock Acquire
- Wait until the lock is free,

then take it

Lock Release
- Release the lock

- If other threads are waiting, wake exactly one up to pass lock to

24 CSE 374 AU 20 - KASEY CHAMPION

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

loop/idle

if locked

Example

If your fridge has no milk,
then go out and buy some more
- What could go wrong?

If you live alone:

If you live with a roommate:

25 CSE 374 AU 20 - KASEY CHAMPION

What if we use a lock on the
refrigerator?
- Probably overkill – what if

roommate wanted to get eggs?

For performance reasons, only
put what is necessary in the
critical section
- Only lock the milk

- But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

fridge.lock()

if (!milk) {

 buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

 buy milk

}

milk_lock.unlock()

pthreads and Locks

Another term for a lock is a mutex (“mutual exclusion”)
- pthread.h defines datatype pthread_mutex_t

pthread_mutex_init()

- Initializes a mutex with specified attributes

pthread_mutex_lock()
- Acquire the lock – blocks if already locked

pthread_mutex_unlock()
- Releases the lock

 pthread_mutex_destroy()
- “Uninitializes” a mutex – clean up when done

26 CSE 374 AU 20 - KASEY CHAMPION

int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Memory Consideration

if one thread did nothing of interest to any other thread, why bother running?

threads must communicate and coordinate
- use results from other threads, and coordinate access to shared resources

simplest ways to not mess each other up:
- don’t access same memory (complete isolation)
- don’t write to shared memory (write isolation)

next simplest
- one thread doesn’t run until/unless another is done

27 CSE 374 AU 20 - KASEY CHAMPION

Parallel Processing

common pattern for expensive computations (such as data processing)

1. split up the work, give each piece to a thread (fork)

2. wait until all are done, then combine answers (join)

to avoid bottlenecks, each thread should have about the same about of work

performance will always be less than perfect speedup

what about when all threads need access to the same mutable memory?

28 CSE 374 AU 20 - KASEY CHAMPION

multiple threads with one memory

often you have a bunch of threads running at once and they might need rthe same
mutable (writable) memory at the same time but probably not
- want to be correct, but not sacrifice parallelism

example: bunch of threads processing bank transactions

29 CSE 374 AU 20 - KASEY CHAMPION

data races

30 CSE 374 AU 20 - KASEY CHAMPION

Questions

31 CSE 374 AU 20 - KASEY CHAMPION

Protected Buffer Disassembly (buf)

32 CSE 374 AU 20 - KASEY CHAMPION

 400607: sub $0x18,%rsp

 40060b: mov %fs:0x28,%rax

 400614: mov %rax,0x8(%rsp)

 400619: xor %eax,%eax

 call printf ...

 400625: mov %rsp,%rdi

 400628: callq 400510 <gets@plt>

 40062d: mov %rsp,%rdi

 400630: callq 4004d0 <puts@plt>

 400635: mov 0x8(%rsp),%rax

 40063a: xor %fs:0x28,%rax

 400643: jne 40064a <echo+0x43>

 400645: add $0x18,%rsp

 400649: retq

 40064a: callq 4004f0

<__stack_chk_fail@plt>

Setting up Canary

33 CSE 374 AU 20 - KASEY CHAMPION

Checking Canary

34 CSE 374 AU 20 - KASEY CHAMPION

