e tid i ?f;‘:{,';,'r
<> Tt

’ -
RGN " 2

y P nac s
o NN
oA
i J
i BN

Lecture Participation Poll #27

Log onto
Or
Text CSE374 to 22333

CSE 374: Intermediate

Lecture 27: Concurrency | roganming concestsan

Tools

http://pollev.com/cse374
http://pollev.com/cse374

Administrivia

*HW 5 (final HW) posted
*Final review assignment coming
*End of quarter due date Wednesday December 161" @ 9pm

Malicious Buffer Overflow — Code Injection

void foo () {
=Buffer overflow bugs can allow bar () ;
attackers to execute arbitrary code on |a.... return address A
victim machines }
Distressingly common in real programs ot ot O
in ar
=Input string contains byte char buf[64]; stack after callto gets ()
representation of executable code gets (buf) ; 1 .
=Overwrite return address A with return ...: stack frame
address of buffer B } p 4
X B
*When bar() executes ret, will jump to _
exploit code data written pad bar
by gets () stack frame
exploit code
buf starts here=—> B—9\. J

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/

Change return to last frame

=Skip the line "x = 1;" in the main function by
modifying function's return address.

Identify where the return address is in relation to the local
variable buffer1

Figure out how many bytes the actual compiled C
instruction "x=1," takes, so that we can increment by that
many bytes

=Use GDB

break function
break right at beginning of function execution
x bufferl
prints the location of buffer1
info frame
"rip" will hold the location of the return address
print <rip-location> - <bufferl-location>
prints the number of bytes between buffer1 and rip
disassemble main

shows the machine code and how many bytes each instruction takes up.

We identify the line that calls function, then see that the next // instruction
moves 1into x. That instruction takes 7 bytes, so we

have now found the second number!

void bufferplay (int a, int b, int c) {
char bufferl[5];
uintptr t ret; //holds an address

//calculate the address of the return pointer
ret = (uintptr t) bufferl + 0; //change to be address of return

//treat that number like a pointer,
//and change the value in it
((uintptr t)ret) += 0; //change to add how much to advance

}

int main(int argc, char** argv) {
int x;
x = 0;
printf ("before: %d\n", x);
bufferplay (1,2,3);
x = 1; // want to skip this line
printf ("after: %d\n",x);
return 0;

Trigger malicious program

Attacker Program

int bar(char *arg,
strcpy (out, argqg);
return 0;

}

void foo(char *argvl[])
char buf[256];
bar (argv[1l], buf);

}

char *out) {

{

int main(int argc, char *argv[]) {
if (argc !'= 2) {
fprintf (stderr, "targetl: argc != 2\n");
exit (1) ;

}
foo (argv) ;
return 0O;

Victim Program

int main (void) {
char *args[3];
char *env[1l];

args[0] = "/tmp/target";
args[2] = NULL;

env[0] = NULL;

args|[1l] =

memset (args[1l], 0x90, 264);

// Null-terminate the string.

args[1][264] = '"\0’;

(char*) malloc(sizeof (char) *265);

used gdb - there are 264 bytes between
buf and return address, so we malloc
space for 264, characters plus one for
the null terminator.

set the memory to a value to
ensure no null-termination in string
before final character.

0x90 is also a byte that means "no-
op" in terms of byte instructions.

// Add in the attack code to the front of the

argument. memcpy(args[l], shellcode,

strlen (shellcode)) ;

* (uintptr t*) (args[1l] + 264) = Ox7fffffffdb90;

// call the victim program. Store address of buf at
execve ("/tmp/target", args, env); }

appropriate location in

string

Hack — Internet Worm

=Qriginal “Internet worm” (1988)

=Exploited vulnerability in gets() method used in
Finger protocol

- Worm attacked fingerd server with phony argument
- finger "exploit-code padding new-return-addr"

Exploit code: executed a root shell on the victim machine with a direct
connection to the attacker

=Worm spread from machine to machine
automatically

- denial of service attack — flood machine with so many requests it
is overloaded and unavailable to its intended users

- took down 6000 machines, took days to get machine back online
- government estimated damage $100,000 to $10,000,000

=Written by Robert Morris while a grad student at
Cornell, but launched it from the MIT computer
system

- meant to be an intellectual experiment, but made it too
damaging by accident

- Now a professor at MIT, first person convicted under the ‘86
Computer Fraud and Abuse Act

L ok A vy B ety s donde of (e Moviis bbores

Kl
| e Thes Uag, P0- o grvgren Seaghe lege pleas
e St ¢ el e Nearmder Tl 1S
-

T s i e oot of Sy s (i o e S

ey

CSE 374 AU 20 - KASEY CHAMPION

~
O

Hack - Heartbleed

=Buffer over-read in Open-Source Security

Library

when program reads beyond end of intended data from a

buffer an

=maliciously designed input - “"Heartbeat” packet

sent out

reads

Specifies length of message and server echoes it back
Library just “trusted” this length

Allowed attackers to read contents of memory anywhere they

wanted

sEst. 17% of internet affected

HEARTBLEED MUST
BE THE WORST WEB
SECURITY LAPSE EVER

WORST S0 FAR.
GME US TIME.

P

I MEAN, THIS BUG ISNT
Just BROKENI ENCRYPTION.

IT LETS WEBSITE VISITORS
MAKE. A SERVER DISPENSE
RANDOM MEMORY (ONTENTS,

£

SERVER, ARE. YOU STILL THERE?
IF 50, REPLY "BIRD" (4 LETTERS).

) these 4 letters: BIRD.

[6]
(o]

.D

User Meg wants

User Meqg wants
HMM.... these 4 letters: BIRD.
{

o}

(0]
o

1T NOT JUST KEYS.
TS TRAFRC DATA.
EMAILS. PABSIIORDS.
EROTIC FANFCTION.
1S EVERYIFING
CmFRM;SED?

WELL, THE ATTRCK 1S
UMTED T© DATA SIORED
IN COMPUTER MEMORY.

50 PAPER |5 SAFE.
AND CLAY TABLETS,

OUR IMAGINATIONS, Too. |
SEE, VELL BE FINE.

iy

SERVER, ARE YOU STiLL THERE?
IF50,REPLY “HAT" (500 LETTERS)

#

ser Meg wants these 500 letters: HAT.

snakes but not too long”. User Karen
wants to change account password to "
S iy

Protect Your Code!

*Employ system-level protections
Code on the Stack is not executable
Randomized Stack offsets

*Avoid overflow vulnerabilities
Use library routines that limit string lengths
Use a language that makes them impossible

=Have compiler use “stack canaries”
place special value (“canary”) on stack just beyond buffer

System Level Protections

*Non-executable code segments Stacl afrareall

to gets (}

=*|n traditional x86, can mark region of \
memory as either “read-only” or “writeable” Foo
Can execute anything readable >' tack
frame
"x86-64 added explicit “execute” permission ar g
=Stack marked as non-executable data written /) | pad >"::uark
Do NOT execute code in Stack, Static Data, or Heap by gets () i
regions exploit | frame
Hardware support needed B —w lcOde J

Any attempt to execute this code will fail

System Level Protections

*Many embedded devices do not have
feature to mark code as “non-executable”
Cars

Smart homes
Pacemakers

sRandomized stack offsets

At start of program, allocate random amount of
space on stack

Shifts stack addresses for entire program
Addresses will vary from one run to another

Makes it difficult for hacker to predict beginning
of inserted code

Random
allocation

B? —

<

.

maln's
_stack frame
Other

functions’
stack frames

B?

pad

exploit

_ code

Avoid Overflow Vulnerabilities

=Use library routines that limit string lengths
fgets instead of gets (2" argument to fgets sets limit)
strncpy instead of strcpy

Don't use scanf with %s conversion specification
Use fgets to read the string
Or use %ns where n is a suitable integer

/* Echo Line */

void echo ()

{
char buf[8];
fgets (buf, 8,
puts (buf) ;

}

/* Way too small!
stdin) ;

*/

=Qr... don't use C - use a language that does array index bounds check

Buffer overflow is impossible in Java
ArraylndexOutOfBoundsException

Rust language was designed with security in mind
Panics on index out of bounds, plus more protections

Stack Canaries

=Basic |dea: place special value (“canary”) on stack just beyond buffer
Secret value that is randomized before main()
Placed between buffer and return address
Check for corruption before exiting function

*GCC implementation
-fstack-protector

unix>. /buf unix> . /buf
Enter string: 12345678 Enter string: 123456789
12345678 *** stack smashing detected ***

Sequential Programming

=Only one query is being processed at a time
All other queries queue up behind the first one
And clients queue up behind the queries ...

what we've been doing so far
sequential programming demands finishing one sequence before starting the next one

=Even while processing one query, the CPU is idle the vast majority of the time
It is blocked waiting for I/O to complete
Disk 1/0O can be very, very slow (10 million times slower ...)

=At most one |/O operation is in flight at a time
Missed opportunities to speed I/O up
Separate devices in parallel, better scheduling of a single device, etc.
performance improvements can only be made by improving hardware

Moore's Law

Concurrency vs Parallelism

=parallelism refers to running things simultaneously on separate resources (ex.
Separate CPUs)

=concurrency refers to running multiple threads on a shared resources
=Concurrency is one person cooking multiple dishes at the same time.
=Parallelism is having multiple people (possibly cooking the same dish).

=Allows processes to run ‘in the background’
=Responsiveness — allow GUI to respond while computation happens
=CPU utilization — allow CPU to compute while waiting (waiting for data, for input)

=isolation — keep threads separate so errors in one don't affect the others

Concurrency

=A search engine could run concurrently:

Example: Execute queries one at a time,
but issue /O requests against different
files/disks simultaneously

Could read from several index files
at once, processing the 1/O results
as they arrive

Example: Web server could execute
multiple queries at the same time

While one is waiting for 1/Q,
e(a:?)%ther can be executing on the

=Use multiple “workers”

At\s a query arrives, create a new “worker” to handle
i
The “worker” reads the query from the network,

issues read requests against Tiles, assembles results
and writes to the network

The "worker” uses blocking 1/O; the “worker”
alternates between consuming CPU cycles and
blocking on I/O

The OS context switches between “workers”

\éVPhLBIe one is blocked on I/O, another can use the

Multiple “workers
once

rn

/O requests can be issued at

So what should we use for our “workers”?

Threads

*|n most modern OS's threads are the unit of scheduling.
Separate the concept of a process from the “thread of execution”
Threads are contained within a process
Usually called a thread, this is a sequential execution stream within a process

=Cohabit the same address space
Threads within a process see the same heap and globals and can communicate with each other through variables and memory
Each thread has its own stack
But, they can interfere with each other — need synchronization for shared resources

=Advantages:
They execute concurrently like processes
You (mostly) write sequential-looking code A Process has a unique: address space, OS resources, and

Threads can run in parallel if you have multiple CPUs/cores security attributes

=Disadvantages: A Thread has a unique: stack, stack pointer, program
If threads share data, you need locks or other synchronization counter, and registers
Very bug-prone and difficult to debug Threads are the unit of scheduling and processes are their
Threads can introduce overhead . :
Lock contention, context switch overhead, and other issues containers; every process has at least one thread running
Need language support for threads in it

Address Spaces

*Multi-threaded
address space

=Single threaded
address space

=Before creating a =After creating a thread
thread - Two threads of execution
running in the address space

- Original thread (parent) and new
thread (child)

- New stack created for child thread

- Child thread has its own values of
the PC and SP

- One thread of execution
running in the address space

- One PC, stack, SP

- That main thread invokes a
function to create a new

]

thread - Both threads share the other
“Tvoicall segments (code, heap,
ypically globals)

pthread_create()

- They can cooperatively modify
shared data

CSE 374 AU 20 - KASEY CHAMPION 17

Creating and Terminating Threads

int pthread create (
pthread t* thread,
const pthread attr t* attr,
volid* (*start routine) (void*),
void* arg);

Creates a new thread into *thread, with attributes *attr (NULL means default attributes)
Returns 0 on success and an error number on error (can check against error constants)
The new thread runs start_routine(arg)

voild pthread exit(void* retval);

Equivalent of exit(retval); for a thread instead of a process
The thread will automatically exit once it returns from start_routine()

After forking threads

int pthread join(pthread t thread, void** retval);

Waits for the thread specified by thread to terminate
The thread equivalent of waitpid()
The exit status of the terminated thread is placed in *retval

int pthread detach (pthread t thread);

Mark thread specified by thread as detached — it will clean up its resources as soon as it terminates

POSIX Threads and Pthread functions

= The POSIX APlIs for dealing with threads

Declared in pthread.h
Not part of the C/C++ language (cf. Java)

To enable support for multithreading, must include -pthread flag when compiling and linking with gcc command

fﬁSI)é.stands for Portable Operating System Interface, pthread conforms to POSIX standard for
reading

gcc —g —-Wall —-std=cll —-pthread -0 main main.c

*Example Usage
pthread t thread ID;
the threadID keeps track of to which thread we are referring
pthread create takes a function plinter and arguments to trigger separate thread

int pthread create(pthread t *thread, const pthread attr t *attr, void *(*start routing) (void*), void
*arqg) ;

note — pthread_create takes two generic (untyped) pointers
interprets the first as a function pointer and the second as an argument pointer

int pthread join(pthread t thread, voild **value ptr);
puts calling thread ‘on hold" until ‘thread’ completes — useful for waiting to thread to exit

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Data Races

=Two memory accesses form a data race if different threads access the same location, and at
least one is a write, and they occur one after another
Means that the result of a program can vary depending on chance (which thread ran first?)

=Data races might interfere in painful, non-obvious ways, depending on the specifics of the
data structure

=Example: two threads try to read from and write to the same shared memory location
Could get “correct” answer
Could accidentally read old value
One thread'’s work could get “lost”

=Example: two threads try to push an item onto the head of the linked list at the same time
Could get “correct” answer
Could get different ordering of items
Could break the data structure!

Synchronization

=Synchronization is the act of preventing two (or more) concurrently running threads
from interfering with each other when operating on shared data

Need some mechanism to coordinate the threads
"Let me go first, then you can go”

Many different coordination mechanisms have been invented

=(Goals of synchronization:

Liveness — ability to execute in a timely manner
(informally, “something good happens”)

Safety — avoid unintended interactions with shared data structures (informally, “nothing bad happens”)

Lock Synchronization

=Use a "Lock” to grant access to a critical section so that only one thread can operate
there at a time
Executed in an uninterruptible (i.e. atomic) manner

= ock Acquire // non-critical code
Wait until the lock is free, _ loop/idle
then take it Lock.acquire ()7 it 5cked
// critical section
=| ock Release lock.release () ;
Release the lock) S ;
If other threads are waiting, wake exactly one up to pass lock to non-critical code

Example

«If your fridge has no milk, -Wh_at if we use a lock on the fridge.lock ()
then go out and buy some more refrlgebll'atori” o ol
Probably overkill — what i uy mi
? y
What could go wrong: roommate wanted to get eggs? }
=|f you live alone: fridge.unlock ()

I
ﬁﬁ AN =For performance reasons, only

put what is necessary in the

critical section

: :) . milk lock.lock ()
If you live with a roommate: Only lock the milk Cf (Tmilk)

buy milk

But lock all steps that must run
uninterrupted (i.e. must run)

r as an atomic unit) milk lock.unlock ()

B[]

pthreads and Locks

=sAnother term for a lock is a mutex (“mutual exclusion”)
pthread.h defines datatype pthread_mutex_t

=nthread_mutex_init()

int pthread mutex init(pthread mutex t* mutex, const pthread mutexattr t* attr);

Initializes a mutex with specified attributes

=pthread_mutex_lock() | int pthread mutex lock (pthread mutex t* mutex);
Acquire the lock — blocks if already locked

»pthread_mutex_unlock() | int pthread mutex unlock (pthread mutex t* mutex) ;
Releases the lock

= pthread_mutex_destroy() | int pthread mutex destroy (pthread mutex t* mutex);
"Uninitializes” a mutex — clean up when done

Memory Consideration

=*if one thread did nothing of interest to any other thread, why bother running?

sthreads must communicate and coordinate
use results from other threads, and coordinate access to shared resources

=simplest ways to not mess each other up:
don't access same memory (complete isolation)
don't write to shared memory (write isolation)

"next simplest
one thread doesn’t run until/unless another is done

Parallel Processing

=common pattern for expensive computations (such as data processing)
1. split up the work, give each piece to a thread (fork)
2. wait until all are done, then combine answers (join)

=t0 avoid bottlenecks, each thread should have about the same about of work
=performance will always be less than perfect speedup

=what about when all threads need access to the same mutable memory?

multiple threads with one memory

=often you have a bunch of threads running at once and they might need rthe same
mutable (writable) memory at the same time but probably not
want to be correct, but not sacrifice parallelism

=example: bunch of threads processing bank transactions

data races

CSE 374 AU 20 - KASEY CHAMPION 30

Questions

CSE 374 AU 20 - KASEY CHAMPION 31

Protected Buffer Disassembly (buf)

400607
40060b:
400614:
400619:
400625:
400628:
40062d:
400630:
400635:
40063a:
400643:
400645:
400649:
40064a:
< stack chk fail@plt>

sub
mov
mov
XOr

$0x18, 3rsp
$fs:0x28, 3rax
srax, 0x8 (srsp)
Teax, seax

call printf

mov
callqg
mov
callqg
mov
XOr
jne
add
retg
callqg

srsp, srdi

400510 <gets@plt>
srsp, srdi

4004d0 <puts@plt>
0x8 (%rsp), srax
$fs:0x28, $rax
40064a <echo+0x43>
$0x18, Srsp

4004£0

CSE 374 AU 20 - KASEY CHAMPION

27D

2L

Setting up Canary

S* Ercho Line */
void echo ()

{

Before call to gets

char buf[8]; /* Way too smalll #/
gets (buf) ;
puts (buf) ;

Stack frame for
Eall_echﬂ

}
echo:

movqg $fs:40, %rax # Get canary

movg Trax, 8 (%rsp) # Place on stack
Lanary xorl Yeax, %feax # Erase canary

(8 bytes)

- buf «—3%rsp

CSE 374 AU 20 - KASEY CHAMPION 33

Checking Canary

/* Foho Lineg */f
After call to gets S
{
Stack frame for char buf[gd]l:; //* Way too smalll */
call echo gets (buf) ;
puts (buf);
}
echo:
movg $fs:40, %rax # Get canary
movq trax, B(%rsp) # Pi ce on stack
Canary xorl ¢eax, %eax # Erase canary
(8 bytes) o
.L4: call = stack chk fail
buf «—3%rsp

Input: 1234567

CSE 374 AU 20 - KASEY CHAMPION 34

