
Lecture 26: Security
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #26

Log onto pollev.com/cse374

Or

Text CSE374 to 22333

http://pollev.com/cse374
http://pollev.com/cse374

Administrivia

HW 5 (final HW) posted

Final review assignment will release last week of quarter

End of quarter due date Wednesday December 16th @ 9pm

2 CSE 374 AU 20 - KASEY CHAMPION

Human to Computer Roadmap

3 CSE 374 AU 20 - KASEY CHAMPION

Assembly Instruction Basics

Assembly instructions fall into one of 3
categories:

Transfer data between memory and register
- Load data from memory into register

- %reg = Mem[address]

- Store register data into memory

- Mem[address] = %reg

Perform arithmetic operation on register or
memory data
- c = a + b; z = x << y; i = h & g;

Control flow: what instruction to execute next
- Unconditional jumps to/from procedures

- Conditional branches

4 CSE 374 AU 20 - KASEY CHAMPION

Items in Assembly fall into one of 3 operand
categories:

Immediate: Constant integer data
- Examples: $0x400, $-533

- Like C literal, but prefixed with ‘$’
- Encoded with 1, 2, 4, or 8 bytes

Register: 1 of 16 integer registers
- Examples: %rax, %r13

Memory: Consecutive bytes of memory at a
computed address
- Simplest example: (%rax)

Register Use(s)

%rdi 1
st

 argument (x)

%rsi 2
nd

 argument (y)

%rax return value

Example: Moving Data

General form: mov_ source, destination
- Missing letter (_) specifies size of operands

- Lots of these in typical code

Examples:

movb src, dst
- Move 1-byte “byte”

movw src, dst
- Move 2-byte “word”

movl src, dst
- Move 4-byte “long word”

movq src, dst
- Move 8-byte “quad word”

5 CSE 374 AU 20 - KASEY CHAMPION

 Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax rax = 4;

Mem movq $-147, (%rax) *rax = -147;

Reg
Reg movq %rax, %rdx rdx = rax;

Mem movq %rax, (%rdx) *rdx = rax;

Mem Reg movq (%rax), %rdx rdx = *rax;

Assume we have two variables called rax and rdx.

Which assembly instruction does *rdx = rax?

1.movq %rdx, %rax

2.movq (%rdx), %rax

3.movq %rax, (%rdx)

4.movq (%rax), %rdx

Example: Arithmetic Operations

6 CSE 374 AU 20 - KASEY CHAMPION

Register Use(s)

%rdi 1
st

 argument (x)

%rsi 2
nd

 argument (y)

%rax return value

Example: swap()

7 CSE 374 AU 20 - KASEY CHAMPION

Example: swap()

8 CSE 374 AU 20 - KASEY CHAMPION

123

456

Example: swap()

9 CSE 374 AU 20 - KASEY CHAMPION

123

456

456

123

Where does everything go?

10 CSE 374 AU 20 - KASEY CHAMPION

char big_array[1L<<24]; /* 16 MB */

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()

{

 void *p1, *p2, *p3, *p4;

 int local = 0;

 p1 = malloc(1L << 28); /* 256 MB */

 p2 = malloc(1L << 8); /* 256 B */

 p3 = malloc(1L << 32); /* 4 GB */

 p4 = malloc(1L << 8); /* 256 B */

 /* Some print statements ... */

}

Function Pointers & Frames

Coded instructions are translated into
numerical values stored in memory and fed
into the processor for execution

function pointer – address of a function
stored in memory, pointing to the start of
the block of memory storing the set of
instructions expressed by the function.

stack frames - section of the stack that
is set aside for each function call
- frame pushed onto the stack when the function is

called and popped off when the function returns.

- each frame contains: arguments, return address,
pointer to last frame, local variables

11 CSE 374 AU 20 - KASEY CHAMPION

Procedure Call Overview

Coordinating between function memory
frames
- Callee must know where to find arguments

- Callee must know where to find return address

- Caller must know where to find return value

Caller and Callee run on the same CPU, so
they use the same registers

calling convention - convention of where to
leave/find things
- caller saves contents of %rax before triggering callee

that returns value (to prevent lose due to overwrite)

- callee places return value into %rax

- for values greater than 8 bytes, return pointer

12 CSE 374 AU 20 - KASEY CHAMPION

What is a Buffer?

A buffer is an array used to temporarily store data
- You’ve probably seen “video buffering…”
- Functions that accept user input set aside memory for incoming data

- Specify size of buffer before you know size of user input

13 CSE 374 AU 20 - KASEY CHAMPION

void echo() {

 char buf[8];

 gets(buf);

 puts(buf);

}

Unix buffer overflow vulnerability

C does not check array bounds, no way to
specify limit on number of characters to
read into a function
- arrays in C/C++ don’t store their length
- Many Unix/Linux/C functions don’t check argument

sizes
- strcpy: copies string of arbitrary length to a destination

- scanf, fscanf, sscanf,

Allows overflowing (writing past the end)
of buffers (arrays)
- Buffer Overflow - Writing past the end of an

array

Provides opportunities for malicious
programs
- Stack grows “backwards” in memory
- Data and instructions both stored in the same

memory
- surprisingly easy to exploit, programmers often leave

code open to attacks

14 CSE 374 AU 20 - KASEY CHAMPION

/* Get string from stdin */

char* gets(char* dest) {

 int c = getchar();

 char* p = dest;

 while (c != EOF && c != '\n') {

 *p++ = c;

 c = getchar();

 }

 *p = '\0';

 return dest;

}

Implementation of Unix gets()

pointer to
start of an array

Same as:
*p = c;

p++;

Buffer Overflow

Stack grows down towards lower addresses

Buffer grows up towards higher addresses

If we write past the end of the array, we overwrite data on the stack!

15 CSE 374 AU 20 - KASEY CHAMPION

 Enter input: hello

-> no overflow

 Enter input: helloabcdef

-> overflow!

What happens when there is an overflow?

Buffer overflows on the stack
can overwrite “interesting”
data
- Attackers just choose the right inputs

Simplest form (sometimes
called “stack smashing”)
- Unchecked length on string input into

bounded array causes overwriting of
stack data

- Try to change the return address of the
current procedure

Why is this a big deal?
- It was the #1 technical cause of security

vulnerabilities
- #1 overall cause is social engineering / user

ignorance

16 CSE 374 AU 20 - KASEY CHAMPION

 Enter input: helloabcdef

We’ve lost our way!
Lost address of function pointer
telling us which instruction to
return to

Malicious Buffer Overflow – Code Injection

Buffer overflow bugs can allow
attackers to execute arbitrary code on
victim machines
- Distressingly common in real programs

Input string contains byte
representation of executable code

Overwrite return address A with
address of buffer B

When bar() executes ret, will jump to
exploit code

17 CSE 374 AU 20 - KASEY CHAMPION

void foo(){

 bar();

A:...

}

int bar() {

 char buf[64];

 gets(buf);

 ...

 return ...;

}

return address A

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-

ever/

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/

Change return to last frame

18 CSE 374 AU 20 - KASEY CHAMPION

void bufferplay (int a, int b, int c) {

 char buffer1[5];

 uintptr_t ret; //holds an address

 //calculate the address of the return pointer

 ret = (uintptr_t) buffer1 + 0; //change to be address of return

 //treat that number like a pointer,

 //and change the value in it

 ((uintptr_t)ret) += 0; //change to add how much to advance

}

int main(int argc, char** argv) {

 int x;

 x = 0;

 printf("before: %d\n",x);

 bufferplay (1,2,3);

 x = 1; // want to skip this line

 printf("after: %d\n",x);

 return 0;

}

Skip the line "x = 1;" in the main function by
modifying function's return address.
- Identify where the return address is in relation to the local

variable buffer1

- Figure out how many bytes the actual compiled C
instruction "x=1;" takes, so that we can increment by that
many bytes

Use GDB
- break function

- break right at beginning of function execution

- x buffer1
- prints the location of buffer1

- info frame
- "rip" will hold the location of the return address

- print <rip-location> - <buffer1-location>
- prints the number of bytes between buffer1 and rip

- disassemble main
- shows the machine code and how many bytes each instruction takes up.

- We identify the line that calls function, then see that the next // instruction
moves 1 into x. That instruction takes 7 bytes, so we

- have now found the second number!

Trigger malicious program

19 CSE 374 AU 20 - KASEY CHAMPION

int bar(char *arg, char *out) {

 strcpy(out, arg);

 return 0;

}

void foo(char *argv[]) {

 char buf[256];

 bar(argv[1], buf);

}

int main(int argc, char *argv[]) {

 if (argc != 2) {

 fprintf(stderr, "target1: argc != 2\n");

 exit(1);

 }

 foo(argv);

 return 0;

}

Victim Program

int main(void) {

char *args[3];

char *env[1];

args[0] = "/tmp/target";

args[2] = NULL;

env[0] = NULL;

args[1] = (char*) malloc(sizeof(char)*265);

memset(args[1], 0x90, 264);

// Null-terminate the string.

args[1][264] = '\0’;

// Add in the attack code to the front of the

argument. memcpy(args[1], shellcode,

strlen(shellcode));

(uintptr_t)(args[1] + 264) = 0x7fffffffdb90;

// call the victim program.

execve("/tmp/target", args, env); }

used gdb - there are 264 bytes between
buf and return address, so we malloc
space for 264, characters plus one for
the null terminator.

set the memory to a value to
ensure no null-termination in string
before final character.
0x90 is also a byte that means "no-
op" in terms of byte instructions.

Store address of buf at
appropriate location in
string

Attacker Program

Hack – Internet Worm

Original “Internet worm” (1988)
Exploited vulnerability in gets() method used in
Finger protocol
- Worm attacked fingerd server with phony argument

- finger "exploit-code padding new-return-addr"

- Exploit code: executed a root shell on the victim machine with a direct
connection to the attacker

Worm spread from machine to machine
automatically
- denial of service attack – flood machine with so many requests it

is overloaded and unavailable to its intended users

- took down 6000 machines, took days to get machine back online

- government estimated damage $100,000 to $10,000,000

Written by Robert Morris while a grad student at
Cornell, but launched it from the MIT computer
system
- meant to be an intellectual experiment, but made it too

damaging by accident

- Now a professor at MIT, first person convicted under the ‘86
Computer Fraud and Abuse Act

20 CSE 374 AU 20 - KASEY CHAMPION

Hack - Heartbleed

Buffer over-read in Open-Source Security
Library
- when program reads beyond end of intended data from a

buffer and reads

maliciously designed input - “Heartbeat” packet
sent out
- Specifies length of message and server echoes it back

- Library just “trusted” this length

- Allowed attackers to read contents of memory anywhere they
wanted

Est. 17% of internet affected
- Similar issue in Cloudbleed (2017)

21 CSE 374 AU 20 - KASEY CHAMPION

Protect Your Code!

Employ system-level protections
- Code on the Stack is not executable

- Randomized Stack offsets

Avoid overflow vulnerabilities
- Use library routines that limit string lengths

- Use a language that makes them impossible

Have compiler use “stack canaries”
- place special value (“canary”) on stack just beyond buffer

22 CSE 374 AU 20 - KASEY CHAMPION

System Level Protections

Non-executable code segments

In traditional x86, can mark region of
memory as either “read-only” or “writeable”
- Can execute anything readable

x86-64 added explicit “execute” permission

Stack marked as non-executable
- Do NOT execute code in Stack, Static Data, or Heap

regions

- Hardware support needed

23 CSE 374 AU 20 - KASEY CHAMPION

System Level Protections

Many embedded devices do not have
feature to mark code as “non-executable”
- Cars

- Smart homes

- Pacemakers

Randomized stack offsets
- At start of program, allocate random amount of

space on stack

- Shifts stack addresses for entire program
- Addresses will vary from one run to another

- Makes it difficult for hacker to predict beginning
of inserted code

24 CSE 374 AU 20 - KASEY CHAMPION

Avoid Overflow Vulnerabilities

Use library routines that limit string lengths
- fgets instead of gets (2nd argument to fgets sets limit)

- strncpy instead of strcpy

- Don’t use scanf with %s conversion specification
- Use fgets to read the string

- Or use %ns where n is a suitable integer

Or… don’t use C - use a language that does array index bounds check
- Buffer overflow is impossible in Java

- ArrayIndexOutOfBoundsException

- Rust language was designed with security in mind
- Panics on index out of bounds, plus more protections

25 CSE 374 AU 20 - KASEY CHAMPION

/* Echo Line */

void echo()

{

 char buf[8]; /* Way too small! */

 fgets(buf, 8, stdin);

 puts(buf);

}

Stack Canaries

Basic Idea: place special value (“canary”) on stack just beyond buffer
- Secret value that is randomized before main()

- Placed between buffer and return address

- Check for corruption before exiting function

GCC implementation
- -fstack-protector

26 CSE 374 AU 20 - KASEY CHAMPION

unix>./buf

Enter string: 12345678

12345678

unix> ./buf

Enter string: 123456789

*** stack smashing detected ***

What is Concurrency?

Running multiple processes simultaneously
- running separate programs simultaneously

- running two different ‘threads’ in on program

Each ’process’ is one ‘thread’
parallelism refers to running things simultaneously on separate resources (ex. Separate CPUs)

concurrency refers to running multiple threads on a shared resources

sequential programming demands finishing one sequence before starting the next one

previously, performance improvements could only be made by improving hardware

Moore’s Law

Allows processes to run ‘in the background’
Responsiveness – allow GUI to respond while computation happens

CPU utilization – allow CPU to compute while waiting (waiting for data, for input)

isolation – keep threads separate so errors in one don’t affect the others

27 CSE 374 AU 20 - KASEY CHAMPION

Concurrency

C and Java support parallelism similarly
- one pile of code, globals, heap

- multiple ”stack + program counter’s” – called threads

- threads are run or pre-empted by a scheduler

- threads all share the same memory

- Various synchronization mechanisms control when threads run
- don’t run until I’m done with this

C: the POSIX Threads (pthreads) library)
- #include <pthread.h>

- pass –lpthread to gcc (when linking)

- pthread_create takes a function pointer and arguments, run as a separate thread

Java: built into the language
- subclass java.lang.Thread, and override the run method

- create a Thread object and call its start method

- any object can ”be synchronized on” (later today)

 28 CSE 374 AU 20 - KASEY CHAMPION

Pthread functions

pthread_t thread ID;
- the threadID keeps trak of to which thread we are referring

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start routing) (void*), void *arg);
- note – pthread_create takes two generic (untyped) pointers

- interprets the first as a function pointer and the second as an argument pointer

int pthread_join(pthread_t thread, void **value_ptr);
- puts calling thread ‘on hold’ until ‘thread’ completes – useful for waiting to thread to exit

29 CSE 374 AU 20 - KASEY CHAMPION https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Memory Consideration

if one thread did nothing of interest to any other thread, why bother running?

threads must communicate and coordinate
- use results from other threads, and coordinate access to shared resources

simplest ways to not mess each other up:
- don’t access same memory (complete isolation)
- don’t write to shared memory (write isolation)

next simplest
- one thread doesn’t run until/unless another is done

30 CSE 374 AU 20 - KASEY CHAMPION

Parallel Processing

common pattern for expensive computations (such as data processing)

1. split up the work, give each piece to a thread (fork)

2. wait until all are done, then combine answers (join)

to avoid bottlenecks, each thread should have about the same about of work

performance will always be less than perfect speedup

what about when all threads need access to the same mutable memory?

31 CSE 374 AU 20 - KASEY CHAMPION

multiple threads with one memory

often you have a bunch of threads running at once and they might need rthe same
mutable (writable) memory at the same time but probably not
- want to be correct, but not sacrifice parallelism

example: bunch of threads processing bank transactions

32 CSE 374 AU 20 - KASEY CHAMPION

data races

33 CSE 374 AU 20 - KASEY CHAMPION

Questions

34 CSE 374 AU 20 - KASEY CHAMPION

Protected Buffer Disassembly (buf)

35 CSE 374 AU 20 - KASEY CHAMPION

 400607: sub $0x18,%rsp

 40060b: mov %fs:0x28,%rax

 400614: mov %rax,0x8(%rsp)

 400619: xor %eax,%eax

 call printf ...

 400625: mov %rsp,%rdi

 400628: callq 400510 <gets@plt>

 40062d: mov %rsp,%rdi

 400630: callq 4004d0 <puts@plt>

 400635: mov 0x8(%rsp),%rax

 40063a: xor %fs:0x28,%rax

 400643: jne 40064a <echo+0x43>

 400645: add $0x18,%rsp

 400649: retq

 40064a: callq 4004f0

<__stack_chk_fail@plt>

Setting up Canary

36 CSE 374 AU 20 - KASEY CHAMPION

Checking Canary

37 CSE 374 AU 20 - KASEY CHAMPION

