e tid i ?f;‘:{,';,'r
<> Tt

’ -
RGN " 2

y P nac s
o NN
oA
i J
i BN

Lecture Participation Poll #26

Log onto
Or
Text CSE374 to 22333

CSE 374: Intermediate

LeCtu re 26: Secu rity Programming Concepts and

Tools

http://pollev.com/cse374
http://pollev.com/cse374

Administrivia

*HW 5 (final HW) posted

=Final review assignment will release last week of quarter

*End of quarter due date Wednesday December 161" @ 9pm

Human to Computer Roadmap

c: Java:

car *c = malloc(sizeof(car)); Car ¢ = new Car();
c->miles = 100; c.setMiles (100) ;
g=2>gals = 17; c.setGals (17);
float mpg = get mpg(c); float mpg =
free(c); c.getMPG () ;

~ &~

Assembly get mpg:

- pushq %rbp
language: e i S

Popg %rbp

=

Machine 0111010000011000

. 100011010000010000000010
code: 1000100111000010
110000011111101000011111

D

Computer
system:

Assembly Instruction Basics

Assembly instructions fall into one of 3
categories:

=Transfer data between memory and register

Load data from memory into register
%reg = Mem[address]

Store register data into memory
Mem[address] = %reg

=Perform arithmetic operation on register or
memory data

cC=a+b z=x<<y, i=h&g;

=Control flow: what instruction to execute next
Unconditional jumps to/from procedures
Conditional branches

ltems in Assembly fall into one of 3 operand
categories:

="Immediate: Constant integer data
Examples: $0x400, $-533

Like C literal, but prefixed with '$’
Encoded with 1, 2, 4, or 8 bytes

=Register: 1 of 16 integer registers
Examples: %rax, %r13

Cregier | usel

. st
Srdi 1 argument (%)
. nd
srsi 2 argument (V)
srax return value

=Memory: Consecutive bytes of memory at a
computed address

Simplest example: (%rax)

Assume we have two variables called rax and rdx.

Exa m p | e: M OVi n g D a ta Which assembly instruction does *rdx = rax?

1l.movg %rdx, %rax

. . 2.movqg (%rdx), %rax
*General form: mov source, destination

Missing letter () specifies size of operands

3.movqg %rax, (%rdx)

Lots of these in typical code 4.movq (srax), srdx

Examples: Source Dest Src, Dest C Analog
"movb src, dst

Move 1-byte "byte” I Reg |movg $0x4, S%$rax rax = 4;

mm
— joX * = - .

smovw src, dst Mem movg $-147, (%rax) rax 147;

Move 2-byte “word”

mov Re movqg %$rax, %srdx rdx = rax;

"movl src, dst . Reg 2 4 - — P

Move 4-byte “long word" Mem |movqg srax, (srdx) rdx = raxj
"movq src, dst Mem Reg movqg (%rax), %srdx rdx = *rax;

Move 8-byte “quad word”

Example: Arithmetic Operations
Tregster | Usel)

long simple arith(long x, long V) S rdi 1% argument (%)

{ Srsi " argument (V)
long t1 = x + y;
long t2 = tl * 3;
return t2;

$rax return value

y += X;
y *= 3;

‘thﬁﬁﬁah
long r = y;
simple arith: / return r;
addq Srdi, S%rsi
imulgq $3, %rsi
movq $rsi, Ssrax
ret

Example: swap()

void swap (long *xp, long *yp) { Registers Memory
long t0 = *xp; Srdi @ ——>
long tl = *yp; Srsi
*xp = tl; Srax
R = el S rdx

}

— ‘Register Variable |
movqg (srdi), %Srax Srdi e XxXp
movq (5rsi), srdx $rsi e yp
movqg <srdx, (%srdi) srax ¢ tO0
movqg <srax, (%srsi) ordx e t1
ret) ’

Example: swap()

Registers Memory word Address
5rdi | 0x120 1221 0x120
. 0x118
$rsi | 0x100 0x110
srax 123 0108
Srdx 456 |« 456 | 0x100
swap :

»movqg (%rdi), %rax # t0 = *xp
movqg (%rsi), %rdx # tl = *yp
movq %rdx, (%Srdi) # *xp = tl
movqg %rax, (%rsi) # *yp = tO0
ret

CSE 374 AU 20 - KASEY CHAMPION 8

Example: swap()

Registers Memory word Address
5rdi | 0x120 456 || 0x120
. Ox118
Srsi | 0x100 0x110
srax 123 0108
Srdx 456 123 || 0x100
swap :
movqg (%rdi), %rax # t0 = *xp
movqg (%rsi), %rdx # tl = *yp
movq %rdx, (%Srdi) # *xp = tl
movqg %rax, (%rsi) # *yp = tO0
ret

Where does everything go?

char big array[1L<<24];
char huge array[1L<<31];

int global = 0;

int useless () { return O;

int main ()

{
void *pl, *p2,
int local =
pl = malloc(
P2 = malloc (
p3 = malloc (1
péd = malloc(lL

0;
1L
1L

<<
<<
<<
<<

/* 16 MB */

/*

}

28) ;

8) s

32);

8) ;

/*
/*
/*
/*

/* Some print statements

2 GB */

256 MB

256 B

4 GB

256 B
*/

*/
x/
*/
*/

AN
1

Stack

\

f_

Heap

Static Data

Literals

Instructions

Function Pointers & Frames

sCoded instructions are translated into

numerical values stored in memory and fed ™, catter I
into the processor for execution E 'am =

. .) save args
=function pointer — address of a function 5 3 uu'w —"
stored in memory, pointing to the start of I save ret nddr [UPdatefe
the block of memory storing the set of HIEl T i
instructions expressed by the function. E Eﬁ |
=stack frames - section of the stack that i ; ol T
is set aside for each function call : 3‘:“;‘:{:"

frame pushed onto the stack when the function is
called and popped off when the function returns.

each frame contains: arguments, return address, low
pointer to last frame, local variables

Procedure Call Overview

=Coordinating between function memory Caller procedures
frames Z
Callee must know where to find arguments <set up args> Callee
Callee must know where to find return address call <create local vars>
: <clean up args>
Caller must know where to find return value <find return val}\ {S-;t 4o return vals
=Caller and Callee run on the same CPU, so \;‘iftrﬂ? local vars>

they use the same registers

=calling convention - convention of where to
leave/find things

caller saves contents of %rax before triggering callee
that returns value (to prevent lose due to overwrite)

callee places return value into %rax
for values greater than 8 bytes, return pointer

What is a Buffer?

=A buffer is an array used to temporarily store data
You've probably seen “video buffering...

Functions that accept user input set aside memory for incoming data
Specify size of buffer before you know size of user input

void echo () {
char buf[8];
gets (buf) ;
puts (buf) ;

Unix buffer overflow vulnerability

=C does not check array bounds, no way to
specify limit on numbeér of characters to
read into a function

arrays in C/C++ don't store their length

Many Unix/Linux/C functions don't check argument
sizes

strcpy: copies string of arbitrary length to a destination
scanf, fscanf, sscanf,

=Allows overflowing (writing past the end)
of buffers (arrays)

Buffer Overflow - Writing past the end of an
array

*Provides opportunities for malicious
programs
Stack grows “backwards” in memory

Data and instructions both stored in the same
memory

surprisingly eas¥ to exploit, programmers often leave
code opén to attacks

Implementation of Unix gets()

/* Get string from stdin */

char* gets(char* dest) { pointer to
int ¢ = getchar();
char* p = dest;

while (c != EOF && c != '\n"')
*pt+ = C; _
c = getchar(); Same as:
} R
*p = '"\0'; pt+;

return dest;

start of an array

{

Buffer Overflow

=Stack grows down towards lower addresses
=Buffer grows up towards higher addresses

=*|f we write past the end of the array, we overwrite data on the stack!

| Higher Addresses Hicher Addresses Higher Addresses
00 00 ' 00
88 Enter input: hello 00 Enter input: helloabcdef 88
00 -> no overflow 88 -> overflow! T
00 00
40 40
dd dd

CSE 374 AU 20 - KASEY CHAMPION 15

What happens when there is an overflow?

=Buffer overflows on the stack
can overwrite “interesting”

data
Attackers just choose the right inputs

=Simplest form (sometimes
called “stack smashing”)

Unchecked length on string input into
bounded array causes overwriting of
stack data

Try to change the return address of the
current procedure

*Why is this a big deal?
It was the #1 technical cause of security
vulnerabilities

#1 overall cause is social engineering / user
ignorance

Return
Address

buf[7]

buf[0]

Enter input: helloabcdef

00

00

00

00

00

40

dd

bf

Return
Address

buf[7]

buf[0]

("

00

00

00

00

l\OI

lfl

lel

ldl

lcl

We’ve lost our way!
Lost address of function pointer
telling us which instruction to
return to

lbl

lal'

I'Ol'

I'll'

l'll'

lel

lhl

Malicious Buffer Overflow — Code Injection

void foo () {
=Buffer overflow bugs can allow bar () ;
attackers to execute arbitrary code on |a.... return address A
victim machines }
Distressingly common in real programs ot ot O
in ar
=Input string contains byte char buf[64]; stack after callto gets ()
representation of executable code gets (buf) ; 1 .
=Overwrite return address A with return ...: stack frame
address of buffer B } p 4
X B
*When bar() executes ret, will jump to _
exploit code data written pad bar
by gets () stack frame
exploit code
buf starts here=—> B—9\. J

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/

Change return to last frame

=Skip the line "x = 1;" in the main function by
modifying function's return address.

Identify where the return address is in relation to the local
variable buffer1

Figure out how many bytes the actual compiled C
instruction "x=1," takes, so that we can increment by that
many bytes

=Use GDB

break function
break right at beginning of function execution
x bufferl
prints the location of buffer1
info frame
"rip" will hold the location of the return address
print <rip-location> - <bufferl-location>
prints the number of bytes between buffer1 and rip
disassemble main

shows the machine code and how many bytes each instruction takes up.

We identify the line that calls function, then see that the next // instruction
moves 1into x. That instruction takes 7 bytes, so we

have now found the second number!

void bufferplay (int a, int b, int c) {
char bufferl[5];
uintptr t ret; //holds an address

//calculate the address of the return pointer
ret = (uintptr t) bufferl + 0; //change to be address of return

//treat that number like a pointer,
//and change the value in it
((uintptr t)ret) += 0; //change to add how much to advance

}

int main(int argc, char** argv) {
int x;
x = 0;
printf ("before: %d\n", x);
bufferplay (1,2,3);
x = 1; // want to skip this line
printf ("after: %d\n",x);
return 0;

Trigger malicious program

Attacker Program

int bar(char *arg,
strcpy (out, argqg);
return 0;

}

void foo(char *argvl[])
char buf[256];
bar (argv[1l], buf);

}

char *out) {

{

int main(int argc, char *argv[]) {
if (argc !'= 2) {
fprintf (stderr, "targetl: argc != 2\n");
exit (1) ;

}
foo (argv) ;
return 0O;

Victim Program

int main (void) {
char *args[3];
char *env[1l];

args[0] = "/tmp/target";
args[2] = NULL;

env[0] = NULL;

args|[1l] =

memset (args[1l], 0x90, 264);

// Null-terminate the string.

args[1][264] = '"\0’;

(char*) malloc(sizeof (char) *265);

used gdb - there are 264 bytes between
buf and return address, so we malloc
space for 264, characters plus one for
the null terminator.

set the memory to a value to
ensure no null-termination in string
before final character.

0x90 is also a byte that means "no-
op" in terms of byte instructions.

// Add in the attack code to the front of the

argument. memcpy(args[l], shellcode,

strlen (shellcode)) ;

* (uintptr t*) (args[1l] + 264) = Ox7fffffffdb90;

// call the victim program. Store address of buf at
execve ("/tmp/target", args, env); }

appropriate location in

string

Hack — Internet Worm

=Qriginal “Internet worm” (1988)

=Exploited vulnerability in gets() method used in
Finger protocol

- Worm attacked fingerd server with phony argument
- finger "exploit-code padding new-return-addr"

Exploit code: executed a root shell on the victim machine with a direct
connection to the attacker

=Worm spread from machine to machine
automatically

- denial of service attack — flood machine with so many requests it
is overloaded and unavailable to its intended users

- took down 6000 machines, took days to get machine back online
- government estimated damage $100,000 to $10,000,000

=Written by Robert Morris while a grad student at
Cornell, but launched it from the MIT computer
system

- meant to be an intellectual experiment, but made it too
damaging by accident

- Now a professor at MIT, first person convicted under the ‘86
Computer Fraud and Abuse Act

L ok A vy B ety s donde of (e Moviis bbores

Kl
| e Thes Uag, P0- o grvgren Seaghe lege pleas
e St ¢ el e Nearmder Tl 1S
-

T s i e oot of Sy s (i o e S

ey

CSE 374 AU 20 - KASEY CHAMPION

20

Hack - Heartbleed

=Buffer over-read in Open-Source Security

Library

when program reads beyond end of intended data from a

buffer an

=maliciously designed input - “"Heartbeat” packet

sent out

reads

Specifies length of message and server echoes it back
Library just “trusted” this length

Allowed attackers to read contents of memory anywhere they

wanted

sEst. 17% of internet affected

HEARTBLEED MUST
BE THE WORST WEB
SECURITY LAPSE EVER

WORST S0 FAR.
GME US TIME.

P

I MEAN, THIS BUG ISNT
Just BROKENI ENCRYPTION.

IT LETS WEBSITE VISITORS
MAKE. A SERVER DISPENSE
RANDOM MEMORY (ONTENTS,

£

SERVER, ARE. YOU STILL THERE?
IF 50, REPLY "BIRD" (4 LETTERS).

) these 4 letters: BIRD.

[6]
(o]

.D

User Meg wants

User Meqg wants
HMM.... these 4 letters: BIRD.
{

o}

(0]
o

1T NOT JUST KEYS.
TS TRAFRC DATA.
EMAILS. PABSIIORDS.
EROTIC FANFCTION.
1S EVERYIFING
CmFRM;SED?

WELL, THE ATTRCK 1S
UMTED T© DATA SIORED
IN COMPUTER MEMORY.

50 PAPER |5 SAFE.
AND CLAY TABLETS,

OUR IMAGINATIONS, Too. |
SEE, VELL BE FINE.

iy

SERVER, ARE YOU STiLL THERE?
IF50,REPLY “HAT" (500 LETTERS)

#

ser Meg wants these 500 letters: HAT.

snakes but not too long”. User Karen
wants to change account password to "
S iy

Protect Your Code!

*Employ system-level protections
Code on the Stack is not executable
Randomized Stack offsets

*Avoid overflow vulnerabilities
Use library routines that limit string lengths
Use a language that makes them impossible

=Have compiler use “stack canaries”
place special value (“canary”) on stack just beyond buffer

System Level Protections

*Non-executable code segments Stacl afrareall

to gets (}

=*|n traditional x86, can mark region of \
memory as either “read-only” or “writeable” Foo
Can execute anything readable >' tack
frame
"x86-64 added explicit “execute” permission ar g
=Stack marked as non-executable data written /) | pad >"::uark
Do NOT execute code in Stack, Static Data, or Heap by gets () i
regions exploit | frame
Hardware support needed B —w lcOde J

Any attempt to execute this code will fail

System Level Protections

*Many embedded devices do not have
feature to mark code as “non-executable”
Cars

Smart homes
Pacemakers

sRandomized stack offsets

At start of program, allocate random amount of
space on stack

Shifts stack addresses for entire program
Addresses will vary from one run to another

Makes it difficult for hacker to predict beginning
of inserted code

Random
allocation

B? —

<

.

maln's
_stack frame
Other

functions’
stack frames

B?

pad

exploit

_ code

Avoid Overflow Vulnerabilities

=Use library routines that limit string lengths
fgets instead of gets (2" argument to fgets sets limit)
strncpy instead of strcpy

Don't use scanf with %s conversion specification
Use fgets to read the string
Or use %ns where n is a suitable integer

/* Echo Line */

void echo ()

{
char buf[8];
fgets (buf, 8,
puts (buf) ;

}

/* Way too small!
stdin) ;

*/

=Qr... don't use C - use a language that does array index bounds check

Buffer overflow is impossible in Java
ArraylndexOutOfBoundsException

Rust language was designed with security in mind
Panics on index out of bounds, plus more protections

Stack Canaries

=Basic |dea: place special value (“canary”) on stack just beyond buffer
Secret value that is randomized before main()
Placed between buffer and return address
Check for corruption before exiting function

*GCC implementation
-fstack-protector

unix>. /buf unix> . /buf
Enter string: 12345678 Enter string: 123456789
12345678 *** stack smashing detected ***

What is Concurrency?

=Running multiple processes simultaneously
running separate programs simultaneously

running two different ‘threads’ in on program

=Each 'process’ is one ‘thread’

=parallelism refers to running things simultaneously on separate resources (ex. Separate CPUs)
=concurrency refers to running multiple threads on a shared resources

=sequential programming demands finishing one sequence before starting the next one
=previously, performance improvements could only be made by improving hardware

=Moore’s Law
=Allows processes to run ‘in the background’
=Responsiveness — allow GUI to respond while computation happens
=CPU utilization — allow CPU to compute while waiting (waiting for data, for input)

=isolation — keep threads separate so errors in one don't affect the others

Concurrency

=C and Java support parallelism similarly
one pile of code, globals, heap
multiple “stack + program counter’s” — called threads
threads are run or pre-empted by a scheduler
threads all share the same memory
Various synchronization mechanisms control when threads run
don't run until I'm done with this

=C: the POSIX Threads (pthreads) library)
#include <pthread.h>
pass —Ipthread to gcc (when linking)
pthread_create takes a function pointer and arguments, run as a separate thread

=Java: built into the language
subclass java.lang.Thread, and override the run method

create a Thread object and call its start method
any object can "be synchronized on” (later today)

Pthread functions

"pthread t thread ID;
the threadID keeps trak of to which thread we are referring

"int pthread create(pthread t *thread, const pthread attr t *attr,
void * (*start routing) (void*), void *arg); B B

note — pthread_create takes two generic (untyped) pointers

interprets the first as a function pointer and the second as an argument pointer

"int pthread join(pthread t thread, void **value ptr);
puts calling thread ‘on hold" until ‘thread’ completes — useful for waiting to thread to exit

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Memory Consideration

=*if one thread did nothing of interest to any other thread, why bother running?

sthreads must communicate and coordinate
use results from other threads, and coordinate access to shared resources

=simplest ways to not mess each other up:
don't access same memory (complete isolation)
don't write to shared memory (write isolation)

"next simplest
one thread doesn’t run until/unless another is done

Parallel Processing

=common pattern for expensive computations (such as data processing)
1. split up the work, give each piece to a thread (fork)
2. wait until all are done, then combine answers (join)

=t0 avoid bottlenecks, each thread should have about the same about of work
=performance will always be less than perfect speedup

=what about when all threads need access to the same mutable memory?

multiple threads with one memory

=often you have a bunch of threads running at once and they might need rthe same
mutable (writable) memory at the same time but probably not
want to be correct, but not sacrifice parallelism

=example: bunch of threads processing bank transactions

data races

CSE 374 AU 20 - KASEY CHAMPION

w

Questions

CSE 374 AU 20 - KASEY CHAMPION 34

Protected Buffer Disassembly (buf)

400607
40060b:
400614:
400619:
400625:
400628:
40062d:
400630:
400635:
40063a:
400643:
400645:
400649:
40064a:
< stack chk fail@plt>

sub
mov
mov
XOr

$0x18, 3rsp
$fs:0x28, 3rax
srax, 0x8 (srsp)
Teax, seax

call printf

mov
callqg
mov
callqg
mov
XOr
jne
add
retg
callqg

srsp, srdi

400510 <gets@plt>
srsp, srdi

4004d0 <puts@plt>
0x8 (%rsp), srax
$fs:0x28, $rax
40064a <echo+0x43>
$0x18, Srsp

4004£0

CSE 374 AU 20 - KASEY CHAMPION

Setting up Canary

S* Ercho Line */
void echo ()

{

Before call to gets

char buf[8]; /* Way too smalll #/
gets (buf) ;
puts (buf) ;

Stack frame for
Eall_echﬂ

}
echo:

movqg $fs:40, %rax # Get canary

movg Trax, 8 (%rsp) # Place on stack
Lanary xorl Yeax, %feax # Erase canary

(8 bytes)

- buf «—3%rsp

CSE 374 AU 20 - KASEY CHAMPION 36

Checking Canary

/* Foho Lineg */f
After call to gets S
{
Stack frame for char buf[gd]l:; //* Way too smalll */
call echo gets (buf) ;
puts (buf);
}
echo:
movg $fs:40, %rax # Get canary
movq trax, B(%rsp) # Pi ce on stack
Canary xorl ¢eax, %eax # Erase canary
(8 bytes) o
.L4: call = stack chk fail
buf «—3%rsp

Input: 1234567

CSE 374 AU 20 - KASEY CHAMPION 37

