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Administrivia

▪ Reminder: HW1 turnin closes on Friday

▪ HW5 due today

-rubric to be posted

▪ HW6 posted

-due Monday of finals week

▪ Thanks for your feedback!

-HW4 individual assignment coming with example exam questions

-HW5 & 6 individual assignments will have example exam questions

-converting these to multiple choice so you can have practice without worrying as much about points

2CSE 374 AU 20 - KASEY CHAMPION



Human to Computer Roadmap
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Assembly Instruction Basics

Assembly instructions fall into one of 3 
categories:

▪ Transfer data between memory and register
-Load data from memory into register

- %reg = Mem[address]

-Store register data into memory
- Mem[address] = %reg

▪ Perform arithmetic operation on register or 
memory data
-c = a + b; z = x << y; i = h & g;

▪ Control flow: what instruction to execute next
-Unconditional jumps to/from procedures

-Conditional branches
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Items in Assembly fall into one of 3 operand 
categories:

▪ Immediate: Constant integer data
-Examples: $0x400, $-533

-Like C literal, but prefixed with ‘$’

-Encoded with 1, 2, 4, or 8 bytes

▪ Register: 1 of 16 integer registers
-Examples: %rax, %r13

▪ Memory: Consecutive bytes of memory at 
a computed address
-Simplest example: (%rax)

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value



Example: Moving Data

▪ General form: mov_ source, destination
-Missing letter (_) specifies size of operands

-Lots of these in typical code

Examples:

▪movb src, dst
-Move 1-byte “byte”

▪movw src, dst
-Move 2-byte “word”

▪movl src, dst
-Move 4-byte “long word”

▪movq src, dst
-Move 8-byte “quad word”
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Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax rax = 4;

Mem movq $-147, (%rax) *rax = -147;

Reg
Reg movq %rax, %rdx rdx = rax;

Mem movq %rax, (%rdx) *rdx = rax;

Mem Reg movq (%rax), %rdx rdx = *rax;

Assume we have two variables called rax and rdx.

Which assembly instruction does *rdx = rax?

1.movq %rdx, %rax

2.movq (%rdx), %rax

3.movq %rax, (%rdx)

4.movq (%rax), %rdx



Example: Arithmetic Operations
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Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value



Example: swap()
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Example: swap()
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123

456



Example: swap()
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123

456

456

123



Where does everything go?
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char big_array[1L<<24]; /* 16 MB */

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()

{

void *p1, *p2, *p3, *p4;

int local = 0;

p1 = malloc(1L << 28); /* 256 MB */

p2 = malloc(1L << 8); /* 256 B */

p3 = malloc(1L << 32); /* 4 GB */

p4 = malloc(1L << 8); /* 256 B */

/* Some print statements ... */

}



Simplified Memory Layout
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Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Memory
Addresses

High
Addresses

Low
Addresses

0x0…

0

0xF…

F

large literals/constants 
(e.g. “example”)

static variables
(including global variables)

variables allocated with
new or malloc

local variables and
procedure context

program code

What Goes Here:Address Space:



Memory Management
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Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Managed “statically”
(initialized when process starts)

Managed “statically”
(initialized when process starts)

Managed “dynamically”
(by programmer)

Managed “automatically”
(by compiler/assembly)

Managed “statically”
(initialized when process starts)

Who’s Responsible:Address Space:

Memory
Addresses

High
Addresses

Low
Addresses

0x0…

0

0xF…

F



Memory Permissions

- Segmentation faults?
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Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Address Space:

Memory
Addresses

High
Addresses

Low
Addresses

0x0…

0

0xF…

F

Permissions:

read-only; not executable

writable; not executable

writable; not executable

writable; not executable

read-only; executable



The Stack

- top most byte of stack pointed to by %rsp
- call pushes “return address” on stack, then jumps
- ret pops return address and jumps to there
- pushq/popq allows you to place other data on the stack

- commonly used to save registers
- often useful to have a pointer to the bottom of the current stack frame

- called the “base pointer”
- stored in %rbp

- copy current stack pointer to %rbp at beginning of function
- Beware: both %rsp and %rbp are callee saved

- must restore thief values before returning
- common pattern: save old %rbp on stack and restore before returning
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pushq %rbp

movq %rsp, %rbp

# other stack setup

… # rest of function

movq %rbp, %rsp

popq %rbp

ret



x86-64 Stack
▪ Region of memory managed 

with stack “discipline”
- Grows toward lower addresses

- Customarily shown “upside-down”

▪ Register %rsp contains 
lowest stack address
- %rsp = address of top element, the 

most-recently-pushed item that is not-
yet-popped
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Stack Pointer: %rsp

Stack 
“Top”

Stack “Bottom”
High
Addresses

Stack Grows
Down

Increasing
Addresses

Low
Addresses
0x00…00



x86-64 Stack:  Push
▪ pushq src

- Fetch operand at src
- Src can be reg, memory, immediate

- Decrement %rsp by 8
- Store value at address given by %rsp

▪ Example:
- pushq %rcx

- Adjust %rsp and store contents of
%rcx on the stack 
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-8Stack Pointer: 
%rsp

Stack “Top”

High
Addresses

Low
Addresses
0x00…00

Stack 
“Bottom”

Stack Grows
Down

Increasing
Addresses



Stack “Top”

x86-64 Stack:  Pop
▪ popq dst

- Load value at address given by %rsp
- Store value at dst
- Increment %rsp by 8

▪ Example:
- popq %rcx

- Stores contents of top of stack 
into %rcx and adjust %rsp
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High
Addresses

Those bits are still there; 
we’re just not using them.

Stack 
“Bottom”

Low
Addresses
0x00…00

Stack Pointer: %rsp +8

Stack Grows
Down

Increasing
Addresses



Function Pointers & Frames

▪ Coded instructions are translated into 
numerical values stored in memory and fed 
into the processor for execution

▪ function pointer – address of a function 
stored in memory, pointing to the start of 
the block of memory storing the set of 
instructions expressed by the function.

▪ stack frames - section of the stack that 
is set aside for each function call
-frame pushed onto the stack when the function is 

called and popped off when the function returns.

-each frame contains: arguments, return address, 
pointer to last frame, local variables
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Calling functions “the calling convention”

call label # jump to label, but “remember” next location

ret        # return to after most recent call

Example:

call helper

“print” %rax

helper:

movq $7, %rax

ret

- no such thing as arguments/return value
- instead a convention is used for registers 

- return value (if any) passed into %rax
- first arg (if any) passed into %rdi
- second arg (if any) passed into %rsi

- important distinction between caller saved and callee saved registers
- any function may use a caller saved register however they want
- functions must restore values if using a callee saved register

- when you call a function you must assume it trashes the caller saved registers
- arguments and return values are caller saved
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Procedure Call Overview

▪ Coordinating between function memory 
frames
-Callee must know where to find arguments

-Callee must know where to find return address

-Caller must know where to find return value

▪ Caller and Callee run on the same CPU, so 
they use the same registers

▪ calling convention - convention of where to 
leave/find things
-caller saves contents of %rax before triggering callee 

that returns value (to prevent lose due to overwrite)

-callee places return value into %rax

-for values greater than 8 bytes, return pointer
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Procedure Call Overview

▪ The convention of where to leave/find things is called the calling 
convention (or procedure call linkage)
- Details vary between systems
- We will see the convention for x86-64/Linux in detail
- What could happen if our program didn’t follow these conventions?
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Caller
…

<save regs>
<set up args>
call

<clean up args>
<restore regs>
<find return val>

…

Callee
<save regs>
<create local vars>

…
<set up return val>
<destroy local vars>
<restore regs>
ret



Procedure Call Example (step 1)
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0000000000400550 <mult2>:

400550:  movq %rdi,%rax

•

•

400557:  ret

0000000000400540 <multstore>:

•

•

400544: call 400550 <mult2>

400549: movq %rax,(%rbx)

•

•
0x120%rsp

•

•

•
0x120

0x128

0x130

0x400544%rip



0x4005490x118

Procedure Call Example (step 2)
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0x118%rsp

•

•

•
0x120

0x128

0x130

0x400550%rip
0000000000400550 <mult2>:

400550:  movq %rdi,%rax

•

•

400557:  ret

0000000000400540 <multstore>:

•

•

400544: call 400550 <mult2>

400549: movq %rax,(%rbx)

•

•



Procedure Return Example (step 1)
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0x4005490x118

0x118%rsp

•

•

•
0x120

0x128

0x130

0x400557%rip
0000000000400550 <mult2>:

400550:  movq %rdi,%rax

•

•

400557:  ret

0000000000400540 <multstore>:

•

•

400544: call 400550 <mult2>

400549: movq %rax,(%rbx)

•

•



Procedure Return Example (step 2)
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0x120%rsp

•

•

•
0x120

0x128

0x130

0x400549%rip
0000000000400550 <mult2>:

400550:  movq %rdi,%rax

•

•

400557:  ret

0000000000400540 <multstore>:

•

•

400544: call 400550 <mult2>

400549: movq %rax,(%rbx)

•

•



Jumps

jmp label # continue execution at label

- most arithmetic instructions set the conditional codes (CCs, aka “flags)
- special cmp instruction to compare

- cmpq a,b # sets CCs based on b-a

- can jump conditionally based on CCs
- je label   # jump to label if condition is true

- jne label  # else, continue to next instruction

- jl label
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Memory in Assembly

- many instructions can refer to memory instead of registers
- use an “addressing mode” to specify what memory

- “register indirect mode” refers to memory through address stored in a register
- written with parentheses around the register
- example:

- movb (%rdi), %al

- reads 1 byte of memory pointed to by %rdi into %al like “*%rdi”

- “general indirect” mode allows indexing
- written as two registers in parans with comma
- example:

- movb (%rdi, %rsi), %al

- reads one byte from the address %rdi + %rsi like “%rdi[%rsi]”

- general form also allows a size to be given
- example:

- movl (%rdi, %rsi, 4), %eax
- reads 4 bytes (l) from address %rdi + 4*%rsi
- like %rdi[%rsi] if we think of %rdi as int*

- only sizes 1,2,4 and 8 are allowed
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What is a Buffer?

▪ A buffer is an array used to temporarily store data
-You’ve probably seen “video buffering…”
-Functions that accept user input set aside memory for incoming data

-Specify size of buffer before you know size of user input
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void echo() {

char buf[8];

gets(buf);

puts(buf);

}



Unix buffer overflow vulnerability

▪ C does not check array bounds, no way 
to specify limit on number of characters to 
read into a function
- arrays in C/C++ don’t store their length
- Many Unix/Linux/C functions don’t check argument 

sizes
- strcpy: copies string of arbitrary length to a destination
- scanf, fscanf, sscanf, 

▪ Allows overflowing (writing past the end) 
of buffers (arrays)
-Buffer Overflow - Writing past the end of an 

array

▪ Provides opportunities for malicious 
programs
- Stack grows “backwards” in memory
- Data and instructions both stored in the same 

memory
- surprisingly easy to exploit, programmers often leave 

code open to attacks

30CSE 374 AU 20 - KASEY CHAMPION

/* Get string from stdin */

char* gets(char* dest) {

int c = getchar();

char* p = dest;

while (c != EOF && c != '\n') {

*p++ = c;

c = getchar();

}

*p = '\0';

return dest;

}

Implementation of Unix gets()

pointer to 
start of an array

Same as:
*p = c;

p++;



Buffer Overflow

▪ Stack grows down towards lower addresses

▪ Buffer grows up towards higher addresses

▪ If we write past the end of the array, we overwrite data on the stack!
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Enter input: hello

-> no overflow
Enter input: helloabcdef

-> overflow!



What happens when there is an overflow?

▪ Buffer overflows on the stack 
can overwrite “interesting” 
data
-Attackers just choose the right inputs

▪ Simplest form (sometimes 
called “stack smashing”)
-Unchecked length on string input into 

bounded array causes overwriting of 
stack data

-Try to change the return address of the 
current procedure

▪ Why is this a big deal?
- It was the #1 technical cause of security 

vulnerabilities
- #1 overall cause is social engineering / user 

ignorance

32CSE 374 AU 20 - KASEY CHAMPION

Enter input: helloabcdef

We’ve lost our way!

Lost address of function pointer 
telling us which instruction to 
return to



Malicious Buffer Overflow – Code Injection

▪ Buffer overflow bugs can allow 
attackers to execute arbitrary code on 
victim machines
-Distressingly common in real programs

▪ Input string contains byte 
representation of executable code

▪ Overwrite return address A with 
address of buffer B

▪ When bar() executes ret, will jump to 
exploit code
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void foo(){

bar();

A:...

}

int bar() {

char buf[64];

gets(buf);

...

return ...;

}

return address A

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-
ever/

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/


Change return to last frame
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void bufferplay (int a, int b, int c) { 

char buffer1[5];

uintptr_t ret; //holds an address 

//calculate the address of the return pointer 

ret = (uintptr_t) buffer1 + 0; //change to be address of return

//treat that number like a pointer, 

//and change the value in it 

*((uintptr_t*)ret) += 0; //change to add how much to advance 

} 

int main(int argc, char** argv) { 

int x; 

x = 0; 

printf("before: %d\n",x); 

bufferplay (1,2,3); 

x = 1; // want to skip this line 

printf("after: %d\n",x); 

return 0; 

}

▪ Skip the line "x = 1;" in the main function by 
modifying function's return address.
- Identify where the return address is in relation to the local 

variable buffer1
- Figure out how many bytes the actual compiled C 

instruction "x=1;" takes, so that we can increment by that 
many bytes

▪ Use GDB
- break function

- break right at beginning of function execution

- x buffer1 
- prints the location of buffer1 

- info frame
- "rip" will hold the location of the return address

- print <rip-location> - <buffer1-location>

- prints the number of bytes between buffer1 and rip 

- disassemble main
- shows the machine code and how many bytes each instruction takes up. 

- We identify the line that calls function, then see that the next // instruction 
moves 1 into x. That instruction takes 7 bytes, so we 

- have now found the second number!



Trigger malicious program
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int bar(char *arg, char *out) { 

strcpy(out, arg); 

return 0; 

} 

void foo(char *argv[]) { 

char buf[256]; 

bar(argv[1], buf); 

} 

int main(int argc, char *argv[]) { 

if (argc != 2) { 

fprintf(stderr, "target1: argc != 2\n"); 

exit(1); 

} 

foo(argv); 

return 0; 

}

Victim Program

int main(void) { 

char *args[3]; 

char *env[1]; 

args[0] = "/tmp/target"; 

args[2] = NULL; 

env[0] = NULL; 

args[1] = (char*) malloc(sizeof(char)*265); 

memset(args[1], 0x90, 264); 

// Null-terminate the string. 

args[1][264] = '\0’;

// Add in the attack code to the front of the 

argument. memcpy(args[1], shellcode, 

strlen(shellcode)); 

*(uintptr_t*)(args[1] + 264) = 0x7fffffffdb90; 

// call the victim program. 

execve("/tmp/target", args, env); }

used gdb - there are 264 bytes between 
buf and return address, so we malloc 
space for 264, characters plus one for 
the null terminator. 

set the memory to a value to 
ensure no null-termination in string 
before final character. 
0x90 is also a byte that means "no-
op" in terms of byte instructions. 

Store address of buf at 
appropriate location in 
string

Attacker 
Program



Hack – Internet Worm

▪ Original “Internet worm” (1988)

▪ Exploited vulnerability in gets() method used in 
Finger protocol
- Worm attacked fingerd server with phony argument

- finger "exploit-code padding new-return-addr"

- Exploit code: executed a root shell on the victim machine with a direct 
connection to the attacker

▪ Worm spread from machine to machine 
automatically 
- denial of service attack – flood machine with so many requests it 

is overloaded and unavailable to its intended users
- took down 6000 machines, took days to get machine back online
- government estimated damage $100,000 to $10,000,000

▪ Written by Robert Morris while a grad student at 
Cornell, but launched it from the MIT computer 
system
- meant to be an intellectual experiment, but made it too 

damaging by accident
- Now a professor at MIT, first person convicted under the ‘86 

Computer Fraud and Abuse Act
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Hack - Heartbleed

▪ Buffer over-read in Open-Source Security 
Library
- when program reads beyond end of intended data from a 

buffer and reads 

▪ maliciously designed input - “Heartbeat” packet 
sent out
- Specifies length of message and server echoes it back
- Library just “trusted” this length
- Allowed attackers to read contents of memory anywhere they 

wanted

▪ Est. 17% of internet affected
- Similar issue in Cloudbleed (2017)
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Protect Your Code!

▪ Employ system-level protections
-Code on the Stack is not executable

-Randomized Stack offsets

▪ Avoid overflow vulnerabilities
-Use library routines that limit string lengths

-Use a language that makes them impossible

▪ Have compiler use “stack canaries”
-place special value (“canary”) on stack just beyond 

buffer
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System Level Protections

▪ Non-executable code segments

▪ In traditional x86, can mark region of 
memory as either “read-only” or 
“writeable”
-Can execute anything readable

▪ x86-64 added explicit “execute” 
permission

▪ Stack marked as non-executable
-Do NOT execute code in Stack, Static Data, or Heap 

regions

-Hardware support needed
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System Level Protections

▪ Many embedded devices do not have 
feature to mark code as “non-executable”
-Cars

-Smart homes

-Pacemakers

▪ Randomized stack offsets
-At start of program, allocate random amount of 

space on stack

-Shifts stack addresses for entire program
- Addresses will vary from one run to another

-Makes it difficult for hacker to predict beginning 
of inserted code
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Avoid Overflow Vulnerabilities

▪ Use library routines that limit string lengths
-fgets instead of gets (2nd argument to fgets sets limit)

-strncpy instead of strcpy

-Don’t use scanf with %s conversion specification
- Use fgets to read the string

- Or use %ns where n is a suitable integer

▪ Or… don’t use C - use a language that does array index bounds check
-Buffer overflow is impossible in Java

- ArrayIndexOutOfBoundsException

-Rust language was designed with security in mind
- Panics on index out of bounds, plus more protections
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/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

fgets(buf, 8, stdin);

puts(buf);

}



Stack Canaries

▪ Basic Idea: place special value (“canary”) on stack just beyond buffer
-Secret value that is randomized before main()

-Placed between buffer and return address

-Check for corruption before exiting function

▪ GCC implementation
- -fstack-protector
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unix>./buf

Enter string: 12345678

12345678

unix> ./buf

Enter string: 123456789

*** stack smashing detected ***



What is Concurrency?
▪ Running multiple processes simultaneously

- running separate programs simultaneously
-running two different ‘threads’ in on program

▪ Each ’process’ is one ‘thread’

▪ parallelism refers to running things simultaneously on separate resources (ex. Separate CPUs)

▪ concurrency refers to running multiple threads on a shared resources

▪ sequential programming demands finishing one sequence before starting the next one

▪ previously, performance improvements could only be made by improving hardware

▪ Moore’s Law

▪ Allows processes to run ‘in the background’

▪ Responsiveness – allow GUI to respond while computation happens

▪ CPU utilization – allow CPU to compute while waiting (waiting for data, for input)

▪ isolation – keep threads separate so errors in one don’t affect the others
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Concurrency

▪ C and Java support parallelism similarly
- one pile of code, globals, heap
- multiple ”stack + program counter’s” – called threads
- threads are run or pre-empted by a scheduler
- threads all share the same memory
- Various synchronization mechanisms control when threads run

- don’t run until I’m done with this

▪ C: the POSIX Threads (pthreads) library)
- #include <pthread.h>
- pass –lpthread to gcc (when linking)
- pthread_create takes a function pointer and arguments, run as a separate thread

▪ Java: built into the language
- subclass java.lang.Thread, and override the run method
- create a Thread object and call its start method
- any object can ”be synchronized on” (later today)
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Pthread functions

▪pthread_t thread ID;
-the threadID keeps trak of to which thread we are referring

▪int pthread_create(pthread_t *thread, const pthread_attr_t *attr, 
void *(*start routing) (void*), void *arg);

-note – pthread_create takes two generic (untyped) pointers

- interprets the first as a function pointer and the second as an argument pointer

▪int pthread_join(pthread_t thread, void **value_ptr);
-puts calling thread ‘on hold’ until ‘thread’ completes – useful for waiting to thread to exit
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https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html


Memory Consideration

▪ if one thread did nothing of interest to any other thread, why bother running?

▪ threads must communicate and coordinate
-use results from other threads, and coordinate access to shared resources

▪ simplest ways to not mess each other up:
-don’t access same memory (complete isolation)

-don’t write to shared memory (write isolation)

▪ next simplest
-one thread doesn’t run until/unless another is done
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Parallel Processing

▪ common pattern for expensive computations (such as data processing)

1. split up the work, give each piece to a thread (fork)

2. wait until all are done, then combine answers (join)

▪ to avoid bottlenecks, each thread should have about the same about of work

▪ performance will always be less than perfect speedup

▪ what about when all threads need access to the same mutable memory?
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multiple threads with one memory

▪ often you have a bunch of threads running at once and they might need rthe same mutable 
(writable) memory at the same time but probably not
-want to be correct, but not sacrifice parallelism

▪ example: bunch of threads processing bank transactions
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data races
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Questions
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Protected Buffer Disassembly (buf)
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400607: sub $0x18,%rsp

40060b: mov %fs:0x28,%rax

400614: mov %rax,0x8(%rsp)

400619: xor %eax,%eax

... ... call printf ...

400625: mov %rsp,%rdi

400628: callq 400510 <gets@plt>

40062d: mov %rsp,%rdi

400630: callq 4004d0 <puts@plt>

400635: mov 0x8(%rsp),%rax

40063a: xor %fs:0x28,%rax

400643: jne 40064a <echo+0x43>

400645: add $0x18,%rsp

400649: retq

40064a: callq 4004f0 

<__stack_chk_fail@plt>



Setting up Canary

52CSE 374 AU 20 - KASEY CHAMPION



Checking Canary
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