
Lecture 25:Assembly
Contd...

CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #25

Log onto pollev.com/cse374
Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia

▪ Reminder: HW1 turnin closes on Friday

▪ HW5 due today

-rubric to be posted

▪ HW6 posted

-due Monday of finals week

▪ Thanks for your feedback!

-HW4 individual assignment coming with example exam questions

-HW5 & 6 individual assignments will have example exam questions

-converting these to multiple choice so you can have practice without worrying as much about points

2CSE 374 AU 20 - KASEY CHAMPION

Human to Computer Roadmap

3CSE 374 AU 20 - KASEY CHAMPION

Assembly Instruction Basics

Assembly instructions fall into one of 3
categories:

▪ Transfer data between memory and register
-Load data from memory into register

- %reg = Mem[address]

-Store register data into memory
- Mem[address] = %reg

▪ Perform arithmetic operation on register or
memory data
-c = a + b; z = x << y; i = h & g;

▪ Control flow: what instruction to execute next
-Unconditional jumps to/from procedures

-Conditional branches

4CSE 374 AU 20 - KASEY CHAMPION

Items in Assembly fall into one of 3 operand
categories:

▪ Immediate: Constant integer data
-Examples: $0x400, $-533

-Like C literal, but prefixed with ‘$’

-Encoded with 1, 2, 4, or 8 bytes

▪ Register: 1 of 16 integer registers
-Examples: %rax, %r13

▪ Memory: Consecutive bytes of memory at
a computed address
-Simplest example: (%rax)

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

Example: Moving Data

▪ General form: mov_ source, destination
-Missing letter (_) specifies size of operands

-Lots of these in typical code

Examples:

▪movb src, dst
-Move 1-byte “byte”

▪movw src, dst
-Move 2-byte “word”

▪movl src, dst
-Move 4-byte “long word”

▪movq src, dst
-Move 8-byte “quad word”

5CSE 374 AU 20 - KASEY CHAMPION

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax rax = 4;

Mem movq $-147, (%rax) *rax = -147;

Reg
Reg movq %rax, %rdx rdx = rax;

Mem movq %rax, (%rdx) *rdx = rax;

Mem Reg movq (%rax), %rdx rdx = *rax;

Assume we have two variables called rax and rdx.

Which assembly instruction does *rdx = rax?

1.movq %rdx, %rax

2.movq (%rdx), %rax

3.movq %rax, (%rdx)

4.movq (%rax), %rdx

Example: Arithmetic Operations

6CSE 374 AU 20 - KASEY CHAMPION

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

Example: swap()

7CSE 374 AU 20 - KASEY CHAMPION

Example: swap()

8CSE 374 AU 20 - KASEY CHAMPION

123

456

Example: swap()

9CSE 374 AU 20 - KASEY CHAMPION

123

456

456

123

Where does everything go?

10CSE 374 AU 20 - KASEY CHAMPION

char big_array[1L<<24]; /* 16 MB */

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()

{

void *p1, *p2, *p3, *p4;

int local = 0;

p1 = malloc(1L << 28); /* 256 MB */

p2 = malloc(1L << 8); /* 256 B */

p3 = malloc(1L << 32); /* 4 GB */

p4 = malloc(1L << 8); /* 256 B */

/* Some print statements ... */

}

Simplified Memory Layout

11

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Memory
Addresses

High
Addresses

Low
Addresses

0x0…

0

0xF…

F

large literals/constants
(e.g. “example”)

static variables
(including global variables)

variables allocated with
new or malloc

local variables and
procedure context

program code

What Goes Here:Address Space:

Memory Management

12

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Managed “statically”
(initialized when process starts)

Managed “statically”
(initialized when process starts)

Managed “dynamically”
(by programmer)

Managed “automatically”
(by compiler/assembly)

Managed “statically”
(initialized when process starts)

Who’s Responsible:Address Space:

Memory
Addresses

High
Addresses

Low
Addresses

0x0…

0

0xF…

F

Memory Permissions

- Segmentation faults?

13

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Address Space:

Memory
Addresses

High
Addresses

Low
Addresses

0x0…

0

0xF…

F

Permissions:

read-only; not executable

writable; not executable

writable; not executable

writable; not executable

read-only; executable

The Stack

- top most byte of stack pointed to by %rsp
- call pushes “return address” on stack, then jumps
- ret pops return address and jumps to there
- pushq/popq allows you to place other data on the stack

- commonly used to save registers
- often useful to have a pointer to the bottom of the current stack frame

- called the “base pointer”
- stored in %rbp

- copy current stack pointer to %rbp at beginning of function
- Beware: both %rsp and %rbp are callee saved

- must restore thief values before returning
- common pattern: save old %rbp on stack and restore before returning

14

pushq %rbp

movq %rsp, %rbp

other stack setup

… # rest of function

movq %rbp, %rsp

popq %rbp

ret

x86-64 Stack
▪ Region of memory managed

with stack “discipline”
- Grows toward lower addresses

- Customarily shown “upside-down”

▪ Register %rsp contains
lowest stack address
- %rsp = address of top element, the

most-recently-pushed item that is not-
yet-popped

15

Stack Pointer: %rsp

Stack
“Top”

Stack “Bottom”
High
Addresses

Stack Grows
Down

Increasing
Addresses

Low
Addresses
0x00…00

x86-64 Stack: Push
▪ pushq src

- Fetch operand at src
- Src can be reg, memory, immediate

- Decrement %rsp by 8
- Store value at address given by %rsp

▪ Example:
- pushq %rcx

- Adjust %rsp and store contents of
%rcx on the stack

16

-8Stack Pointer:
%rsp

Stack “Top”

High
Addresses

Low
Addresses
0x00…00

Stack
“Bottom”

Stack Grows
Down

Increasing
Addresses

Stack “Top”

x86-64 Stack: Pop
▪ popq dst

- Load value at address given by %rsp
- Store value at dst
- Increment %rsp by 8

▪ Example:
- popq %rcx

- Stores contents of top of stack
into %rcx and adjust %rsp

17

High
Addresses

Those bits are still there;
we’re just not using them.

Stack
“Bottom”

Low
Addresses
0x00…00

Stack Pointer: %rsp +8

Stack Grows
Down

Increasing
Addresses

Function Pointers & Frames

▪ Coded instructions are translated into
numerical values stored in memory and fed
into the processor for execution

▪ function pointer – address of a function
stored in memory, pointing to the start of
the block of memory storing the set of
instructions expressed by the function.

▪ stack frames - section of the stack that
is set aside for each function call
-frame pushed onto the stack when the function is

called and popped off when the function returns.

-each frame contains: arguments, return address,
pointer to last frame, local variables

18CSE 374 AU 21 - KASEY CHAMPION

Calling functions “the calling convention”

call label # jump to label, but “remember” next location

ret # return to after most recent call

Example:

call helper

“print” %rax

helper:

movq $7, %rax

ret

- no such thing as arguments/return value
- instead a convention is used for registers

- return value (if any) passed into %rax
- first arg (if any) passed into %rdi
- second arg (if any) passed into %rsi

- important distinction between caller saved and callee saved registers
- any function may use a caller saved register however they want
- functions must restore values if using a callee saved register

- when you call a function you must assume it trashes the caller saved registers
- arguments and return values are caller saved

19

Procedure Call Overview

▪ Coordinating between function memory
frames
-Callee must know where to find arguments

-Callee must know where to find return address

-Caller must know where to find return value

▪ Caller and Callee run on the same CPU, so
they use the same registers

▪ calling convention - convention of where to
leave/find things
-caller saves contents of %rax before triggering callee

that returns value (to prevent lose due to overwrite)

-callee places return value into %rax

-for values greater than 8 bytes, return pointer

20CSE 374 AU 20 - KASEY CHAMPION

Procedure Call Overview

▪ The convention of where to leave/find things is called the calling
convention (or procedure call linkage)
- Details vary between systems
- We will see the convention for x86-64/Linux in detail
- What could happen if our program didn’t follow these conventions?

21

Caller
…

<save regs>
<set up args>
call

<clean up args>
<restore regs>
<find return val>

…

Callee
<save regs>
<create local vars>

…
<set up return val>
<destroy local vars>
<restore regs>
ret

Procedure Call Example (step 1)

22

0000000000400550 <mult2>:

400550: movq %rdi,%rax

•

•

400557: ret

0000000000400540 <multstore>:

•

•

400544: call 400550 <mult2>

400549: movq %rax,(%rbx)

•

•
0x120%rsp

•

•

•
0x120

0x128

0x130

0x400544%rip

0x4005490x118

Procedure Call Example (step 2)

23

0x118%rsp

•

•

•
0x120

0x128

0x130

0x400550%rip
0000000000400550 <mult2>:

400550: movq %rdi,%rax

•

•

400557: ret

0000000000400540 <multstore>:

•

•

400544: call 400550 <mult2>

400549: movq %rax,(%rbx)

•

•

Procedure Return Example (step 1)

24

0x4005490x118

0x118%rsp

•

•

•
0x120

0x128

0x130

0x400557%rip
0000000000400550 <mult2>:

400550: movq %rdi,%rax

•

•

400557: ret

0000000000400540 <multstore>:

•

•

400544: call 400550 <mult2>

400549: movq %rax,(%rbx)

•

•

Procedure Return Example (step 2)

25

0x120%rsp

•

•

•
0x120

0x128

0x130

0x400549%rip
0000000000400550 <mult2>:

400550: movq %rdi,%rax

•

•

400557: ret

0000000000400540 <multstore>:

•

•

400544: call 400550 <mult2>

400549: movq %rax,(%rbx)

•

•

Jumps

jmp label # continue execution at label

- most arithmetic instructions set the conditional codes (CCs, aka “flags)
- special cmp instruction to compare

- cmpq a,b # sets CCs based on b-a

- can jump conditionally based on CCs
- je label # jump to label if condition is true

- jne label # else, continue to next instruction

- jl label

26

Memory in Assembly

- many instructions can refer to memory instead of registers
- use an “addressing mode” to specify what memory

- “register indirect mode” refers to memory through address stored in a register
- written with parentheses around the register
- example:

- movb (%rdi), %al

- reads 1 byte of memory pointed to by %rdi into %al like “*%rdi”

- “general indirect” mode allows indexing
- written as two registers in parans with comma
- example:

- movb (%rdi, %rsi), %al

- reads one byte from the address %rdi + %rsi like “%rdi[%rsi]”

- general form also allows a size to be given
- example:

- movl (%rdi, %rsi, 4), %eax
- reads 4 bytes (l) from address %rdi + 4*%rsi
- like %rdi[%rsi] if we think of %rdi as int*

- only sizes 1,2,4 and 8 are allowed

27

28

What is a Buffer?

▪ A buffer is an array used to temporarily store data
-You’ve probably seen “video buffering…”
-Functions that accept user input set aside memory for incoming data

-Specify size of buffer before you know size of user input

29CSE 374 AU 20 - KASEY CHAMPION

void echo() {

char buf[8];

gets(buf);

puts(buf);

}

Unix buffer overflow vulnerability

▪ C does not check array bounds, no way
to specify limit on number of characters to
read into a function
- arrays in C/C++ don’t store their length
- Many Unix/Linux/C functions don’t check argument

sizes
- strcpy: copies string of arbitrary length to a destination
- scanf, fscanf, sscanf,

▪ Allows overflowing (writing past the end)
of buffers (arrays)
-Buffer Overflow - Writing past the end of an

array

▪ Provides opportunities for malicious
programs
- Stack grows “backwards” in memory
- Data and instructions both stored in the same

memory
- surprisingly easy to exploit, programmers often leave

code open to attacks

30CSE 374 AU 20 - KASEY CHAMPION

/* Get string from stdin */

char* gets(char* dest) {

int c = getchar();

char* p = dest;

while (c != EOF && c != '\n') {

*p++ = c;

c = getchar();

}

*p = '\0';

return dest;

}

Implementation of Unix gets()

pointer to
start of an array

Same as:
*p = c;

p++;

Buffer Overflow

▪ Stack grows down towards lower addresses

▪ Buffer grows up towards higher addresses

▪ If we write past the end of the array, we overwrite data on the stack!

31CSE 374 AU 20 - KASEY CHAMPION

Enter input: hello

-> no overflow
Enter input: helloabcdef

-> overflow!

What happens when there is an overflow?

▪ Buffer overflows on the stack
can overwrite “interesting”
data
-Attackers just choose the right inputs

▪ Simplest form (sometimes
called “stack smashing”)
-Unchecked length on string input into

bounded array causes overwriting of
stack data

-Try to change the return address of the
current procedure

▪ Why is this a big deal?
- It was the #1 technical cause of security

vulnerabilities
- #1 overall cause is social engineering / user

ignorance

32CSE 374 AU 20 - KASEY CHAMPION

Enter input: helloabcdef

We’ve lost our way!

Lost address of function pointer
telling us which instruction to
return to

Malicious Buffer Overflow – Code Injection

▪ Buffer overflow bugs can allow
attackers to execute arbitrary code on
victim machines
-Distressingly common in real programs

▪ Input string contains byte
representation of executable code

▪ Overwrite return address A with
address of buffer B

▪ When bar() executes ret, will jump to
exploit code

33CSE 374 AU 20 - KASEY CHAMPION

void foo(){

bar();

A:...

}

int bar() {

char buf[64];

gets(buf);

...

return ...;

}

return address A

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-
ever/

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/

Change return to last frame

34CSE 374 AU 20 - KASEY CHAMPION

void bufferplay (int a, int b, int c) {

char buffer1[5];

uintptr_t ret; //holds an address

//calculate the address of the return pointer

ret = (uintptr_t) buffer1 + 0; //change to be address of return

//treat that number like a pointer,

//and change the value in it

((uintptr_t)ret) += 0; //change to add how much to advance

}

int main(int argc, char** argv) {

int x;

x = 0;

printf("before: %d\n",x);

bufferplay (1,2,3);

x = 1; // want to skip this line

printf("after: %d\n",x);

return 0;

}

▪ Skip the line "x = 1;" in the main function by
modifying function's return address.
- Identify where the return address is in relation to the local

variable buffer1
- Figure out how many bytes the actual compiled C

instruction "x=1;" takes, so that we can increment by that
many bytes

▪ Use GDB
- break function

- break right at beginning of function execution

- x buffer1
- prints the location of buffer1

- info frame
- "rip" will hold the location of the return address

- print <rip-location> - <buffer1-location>

- prints the number of bytes between buffer1 and rip

- disassemble main
- shows the machine code and how many bytes each instruction takes up.

- We identify the line that calls function, then see that the next // instruction
moves 1 into x. That instruction takes 7 bytes, so we

- have now found the second number!

Trigger malicious program

35CSE 374 AU 20 - KASEY CHAMPION

int bar(char *arg, char *out) {

strcpy(out, arg);

return 0;

}

void foo(char *argv[]) {

char buf[256];

bar(argv[1], buf);

}

int main(int argc, char *argv[]) {

if (argc != 2) {

fprintf(stderr, "target1: argc != 2\n");

exit(1);

}

foo(argv);

return 0;

}

Victim Program

int main(void) {

char *args[3];

char *env[1];

args[0] = "/tmp/target";

args[2] = NULL;

env[0] = NULL;

args[1] = (char*) malloc(sizeof(char)*265);

memset(args[1], 0x90, 264);

// Null-terminate the string.

args[1][264] = '\0’;

// Add in the attack code to the front of the

argument. memcpy(args[1], shellcode,

strlen(shellcode));

(uintptr_t)(args[1] + 264) = 0x7fffffffdb90;

// call the victim program.

execve("/tmp/target", args, env); }

used gdb - there are 264 bytes between
buf and return address, so we malloc
space for 264, characters plus one for
the null terminator.

set the memory to a value to
ensure no null-termination in string
before final character.
0x90 is also a byte that means "no-
op" in terms of byte instructions.

Store address of buf at
appropriate location in
string

Attacker
Program

Hack – Internet Worm

▪ Original “Internet worm” (1988)

▪ Exploited vulnerability in gets() method used in
Finger protocol
- Worm attacked fingerd server with phony argument

- finger "exploit-code padding new-return-addr"

- Exploit code: executed a root shell on the victim machine with a direct
connection to the attacker

▪ Worm spread from machine to machine
automatically
- denial of service attack – flood machine with so many requests it

is overloaded and unavailable to its intended users
- took down 6000 machines, took days to get machine back online
- government estimated damage $100,000 to $10,000,000

▪ Written by Robert Morris while a grad student at
Cornell, but launched it from the MIT computer
system
- meant to be an intellectual experiment, but made it too

damaging by accident
- Now a professor at MIT, first person convicted under the ‘86

Computer Fraud and Abuse Act

36CSE 374 AU 20 - KASEY CHAMPION

Hack - Heartbleed

▪ Buffer over-read in Open-Source Security
Library
- when program reads beyond end of intended data from a

buffer and reads

▪ maliciously designed input - “Heartbeat” packet
sent out
- Specifies length of message and server echoes it back
- Library just “trusted” this length
- Allowed attackers to read contents of memory anywhere they

wanted

▪ Est. 17% of internet affected
- Similar issue in Cloudbleed (2017)

37CSE 374 AU 20 - KASEY CHAMPION

Protect Your Code!

▪ Employ system-level protections
-Code on the Stack is not executable

-Randomized Stack offsets

▪ Avoid overflow vulnerabilities
-Use library routines that limit string lengths

-Use a language that makes them impossible

▪ Have compiler use “stack canaries”
-place special value (“canary”) on stack just beyond

buffer

38CSE 374 AU 20 - KASEY CHAMPION

System Level Protections

▪ Non-executable code segments

▪ In traditional x86, can mark region of
memory as either “read-only” or
“writeable”
-Can execute anything readable

▪ x86-64 added explicit “execute”
permission

▪ Stack marked as non-executable
-Do NOT execute code in Stack, Static Data, or Heap

regions

-Hardware support needed

39CSE 374 AU 20 - KASEY CHAMPION

System Level Protections

▪ Many embedded devices do not have
feature to mark code as “non-executable”
-Cars

-Smart homes

-Pacemakers

▪ Randomized stack offsets
-At start of program, allocate random amount of

space on stack

-Shifts stack addresses for entire program
- Addresses will vary from one run to another

-Makes it difficult for hacker to predict beginning
of inserted code

40CSE 374 AU 20 - KASEY CHAMPION

Avoid Overflow Vulnerabilities

▪ Use library routines that limit string lengths
-fgets instead of gets (2nd argument to fgets sets limit)

-strncpy instead of strcpy

-Don’t use scanf with %s conversion specification
- Use fgets to read the string

- Or use %ns where n is a suitable integer

▪ Or… don’t use C - use a language that does array index bounds check
-Buffer overflow is impossible in Java

- ArrayIndexOutOfBoundsException

-Rust language was designed with security in mind
- Panics on index out of bounds, plus more protections

41CSE 374 AU 20 - KASEY CHAMPION

/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

fgets(buf, 8, stdin);

puts(buf);

}

Stack Canaries

▪ Basic Idea: place special value (“canary”) on stack just beyond buffer
-Secret value that is randomized before main()

-Placed between buffer and return address

-Check for corruption before exiting function

▪ GCC implementation
- -fstack-protector

42CSE 374 AU 20 - KASEY CHAMPION

unix>./buf

Enter string: 12345678

12345678

unix> ./buf

Enter string: 123456789

*** stack smashing detected ***

What is Concurrency?
▪ Running multiple processes simultaneously

- running separate programs simultaneously
-running two different ‘threads’ in on program

▪ Each ’process’ is one ‘thread’

▪ parallelism refers to running things simultaneously on separate resources (ex. Separate CPUs)

▪ concurrency refers to running multiple threads on a shared resources

▪ sequential programming demands finishing one sequence before starting the next one

▪ previously, performance improvements could only be made by improving hardware

▪ Moore’s Law

▪ Allows processes to run ‘in the background’

▪ Responsiveness – allow GUI to respond while computation happens

▪ CPU utilization – allow CPU to compute while waiting (waiting for data, for input)

▪ isolation – keep threads separate so errors in one don’t affect the others

43CSE 374 AU 20 - KASEY CHAMPION

Concurrency

▪ C and Java support parallelism similarly
- one pile of code, globals, heap
- multiple ”stack + program counter’s” – called threads
- threads are run or pre-empted by a scheduler
- threads all share the same memory
- Various synchronization mechanisms control when threads run

- don’t run until I’m done with this

▪ C: the POSIX Threads (pthreads) library)
- #include <pthread.h>
- pass –lpthread to gcc (when linking)
- pthread_create takes a function pointer and arguments, run as a separate thread

▪ Java: built into the language
- subclass java.lang.Thread, and override the run method
- create a Thread object and call its start method
- any object can ”be synchronized on” (later today)

44CSE 374 AU 20 - KASEY CHAMPION

Pthread functions

▪pthread_t thread ID;
-the threadID keeps trak of to which thread we are referring

▪int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start routing) (void*), void *arg);

-note – pthread_create takes two generic (untyped) pointers

- interprets the first as a function pointer and the second as an argument pointer

▪int pthread_join(pthread_t thread, void **value_ptr);
-puts calling thread ‘on hold’ until ‘thread’ completes – useful for waiting to thread to exit

45CSE 374 AU 20 - KASEY CHAMPIONhttps://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Memory Consideration

▪ if one thread did nothing of interest to any other thread, why bother running?

▪ threads must communicate and coordinate
-use results from other threads, and coordinate access to shared resources

▪ simplest ways to not mess each other up:
-don’t access same memory (complete isolation)

-don’t write to shared memory (write isolation)

▪ next simplest
-one thread doesn’t run until/unless another is done

46CSE 374 AU 20 - KASEY CHAMPION

Parallel Processing

▪ common pattern for expensive computations (such as data processing)

1. split up the work, give each piece to a thread (fork)

2. wait until all are done, then combine answers (join)

▪ to avoid bottlenecks, each thread should have about the same about of work

▪ performance will always be less than perfect speedup

▪ what about when all threads need access to the same mutable memory?

47CSE 374 AU 20 - KASEY CHAMPION

multiple threads with one memory

▪ often you have a bunch of threads running at once and they might need rthe same mutable
(writable) memory at the same time but probably not
-want to be correct, but not sacrifice parallelism

▪ example: bunch of threads processing bank transactions

48CSE 374 AU 20 - KASEY CHAMPION

data races

49CSE 374 AU 20 - KASEY CHAMPION

Questions

50CSE 374 AU 20 - KASEY CHAMPION

Protected Buffer Disassembly (buf)

51CSE 374 AU 20 - KASEY CHAMPION

400607: sub $0x18,%rsp

40060b: mov %fs:0x28,%rax

400614: mov %rax,0x8(%rsp)

400619: xor %eax,%eax

... ... call printf ...

400625: mov %rsp,%rdi

400628: callq 400510 <gets@plt>

40062d: mov %rsp,%rdi

400630: callq 4004d0 <puts@plt>

400635: mov 0x8(%rsp),%rax

40063a: xor %fs:0x28,%rax

400643: jne 40064a <echo+0x43>

400645: add $0x18,%rsp

400649: retq

40064a: callq 4004f0

<__stack_chk_fail@plt>

Setting up Canary

52CSE 374 AU 20 - KASEY CHAMPION

Checking Canary

53CSE 374 AU 20 - KASEY CHAMPION

