
Lecture 25: Assembly 
CSE 374: Intermediate 
Programming Concepts and 
Tools 
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Lecture Participation Poll #25 

 

Log onto pollev.com/cse374  

Or 

Text CSE374 to 22333 

http://pollev.com/cse374
http://pollev.com/cse374


Administrivia 

HW 4 posted -> Extra credit due date Thursday Dec 3rd  

HW 5 (final HW) coming later today 

HW 6 extra credit releasing next week 

2 more exercises coming – 1 later today, 1 next week 

Final review assignment will release last week of quarter 

End of quarter due date Wednesday December 16th @ 9pm  

2 CSE 374 AU 20 - KASEY CHAMPION 

THANK YOU FOR YOUR PATIENCE 

Decriminalizing Our College Campuses 
Date: Thursday, December 3, 2020 

Time: 6-8 pm 

Location: Zoom link will be emailed to everyone who RSVPs 

RSVP link: https://forms.gle/5FSZQsFTgAaYKUh56 

https://forms.gle/5FSZQsFTgAaYKUh56


Review: General Memory Layout 

Stack 
- Local variables (procedure context) 

Heap 
- Dynamically allocated as needed 

- malloc(), calloc(), new, … 

Statically allocated Data 
- Read/write:  global variables (Static Data) 

- Read-only:  string literals (Literals) 

Code/Instructions 
- Executable machine instructions 

- Read-only 
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Where does everything go? 
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char big_array[1L<<24];  /* 16 MB */ 

char huge_array[1L<<31]; /*  2 GB */ 

 

int global = 0; 

 

int useless() { return 0; } 

 

int main() 

{ 

    void *p1, *p2, *p3, *p4; 

    int local = 0; 

    p1 = malloc(1L << 28); /* 256 MB */ 

    p2 = malloc(1L << 8);  /* 256  B */ 

    p3 = malloc(1L << 32); /*   4 GB */ 

    p4 = malloc(1L << 8);  /* 256  B */ 

    /* Some print statements ... */ 

} 



Hardware Software Interface 
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From Human to Computer 

C /C++ is translated directly into assembly by compiler 
- Other languages may be translated into another form 

- Java is translated into an assembly-like form, which is then run by the Java interpreter/runtime 

- The Java runtime is executing assembly instructions! 

- Some languages are directly interpreted without being translated into another form 

- Most Bash implementations will directly interpret the commands without compiling 

- Python can do either. It can be used as an interpreter or compile scripts 

Assembler translates assembly into machine code 
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#include <stdio.h> 
  
int main() 
{ 
   char name[20]; 
   … 
   return 0; 
} 

push ebp 
mov  ebp, esp 
sub  esp, 0C0h 

83 ec 08 
83 e4 f0 

b8 00 00 00 00  

83 c0 0f  

Compiler Assembler 

C 

Assembly 
Machine Code 



Computer Architecture 

Instruction Set Architecture (ISA):  The ”programming language” of the processor, 
the syntax and language of how to give commands to the processor.  
- There are a set of ISAs that are supported by a larger collection of microarchitectures 
- Ex: x86, ARM ISA, TI DSPs ISA 

The ISA defines: 
- The system’s state (e.g. registers, memory, program counter) 

- The instructions the CPU can execute 

- The effect that each of these instructions will have on the system state 

Microarchitecture: The way a specific processor executes a given ISA based on the 
processor’s design. 
- The Microarchitecture defines how the data (data path) moves through the parts of the processor 
(control path), often represented as a data flow diagram. 

- microarchitecture dictates the flow of instructions through items within the processor such as logic 
gates, registers, Arithmetic Logic Units (ALUs)  
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Mainstream ISAs 
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Macbooks & PCs 

(Core i3, i5, i7, M) 

x86-64 instruction set Smartphone (and similar) devices 

(iPhone, iPad, Raspberry Pi) 

ARM instruction set 

Digital home & networking 

(Blu-ray, Playstation 2) 

MIPS instruction set 



So… who writes assembly? 

Chances are, you’ll never write a program in assembly!  
- BUT understanding assembly is the key to the machine-level execution model. 

Some use cases for assembly: 
- When working in embedded where you can’t trust the compiler to reduce program size as efficiently as 

possible 

- When special purpose subroutines are required that are not possible in higher level languages 

- Behavior of programs in the presence of bugs 
- When high-level language model breaks down 

- Tuning program performance 

- Implementing systems software 

- Fighting malicious software 
- Distributed software is in binary form 
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Assembly Programmer’s View 

Programmer-visible state 
- PC:  the Program Counter (%rip in x86-64) 

- Address of next instruction 

- Named registers 
- Heavily used program data 

- Condition codes 
- Store status information about most recent arithmetic operation 

- Used for conditional branching 
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Registers 

A location in the CPU that stores a small amount of data, which can be accessed very quickly (once 
every clock cycle) 

Registers have names, not addresses 
- In assembly, they start with % (e.g. %rsi) 

Registers are at the heart of assembly programming 
- They are a precious commodity in all architectures, but especially x86 
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Memory 

Addresses (EX: 0x7FFFD024C3DC) 

Big ~ 8 GiB  

Slow ~50-100 ns  

Dynamic - Can “grow” as needed  
  while program runs 

Registers 

Names (EX: %rdi) 

Small - (16 x 8 B) = 128 B 

Fast - sub-nanosecond timescale 

Static - fixed number in hardware 



Assembly Instruction Basics 

Assembly instructions fall into one of 3 
categories: 

Transfer data between memory and register 
- Load data from memory into register 

- %reg = Mem[address]  

- Store register data into memory 

- Mem[address] = %reg 

Perform arithmetic operation on register or 
memory data 
- c = a + b;    z = x << y;    i = h & g; 

Control flow: what instruction to execute next 
- Unconditional jumps to/from procedures 

- Conditional branches 
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Items in Assembly fall into one of 3 operand 
categories: 

Immediate:  Constant integer data 
- Examples:  $0x400,  $-533 

- Like C literal, but prefixed with ‘$’ 
- Encoded with 1, 2, 4, or 8 bytes  

Register:  1 of 16 integer registers 
- Examples:  %rax,  %r13 

Memory:  Consecutive bytes of memory at 
a computed address 
- Simplest example:  (%rax) 



Example: Moving Data 

General form:  mov_ source, destination 
- Missing letter (_) specifies size of operands 

- Lots of these in typical code 

 
Examples: 

movb src, dst 
- Move 1-byte “byte” 

movw src, dst 
- Move 2-byte “word” 

movl src, dst 
- Move 4-byte “long word” 

movq src, dst 
- Move 8-byte “quad word” 
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  Source Dest Src, Dest C Analog 

          

movq 

Imm 
Reg movq $0x4, %rax  rax = 4; 

Mem movq $-147, (%rax)  *rax = -147; 

        

Reg 
Reg movq %rax, %rdx  rdx = rax; 

Mem movq %rax, (%rdx)  *rdx = rax; 

        

Mem Reg movq (%rax), %rdx  rdx = *rax; 

Assume we have two variables called rax and rdx. 

Which assembly instruction does *rdx = rax? 

1.movq %rdx, %rax 

2.movq (%rdx), %rax 

3.movq %rax, (%rdx) 

4.movq (%rax), %rdx 



Example: Arithmetic Operations 
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Register Use(s) 

%rdi 1
st

 argument (x) 

%rsi 2
nd

 argument (y) 

%rax return value 



Example: swap() 
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Example: swap() 
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123 

456 



Example: swap() 
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123 

456 

456 

123 



Where does everything go? 
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char big_array[1L<<24];  /* 16 MB */ 

char huge_array[1L<<31]; /*  2 GB */ 

 

int global = 0; 

 

int useless() { return 0; } 

 

int main() 

{ 

    void *p1, *p2, *p3, *p4; 

    int local = 0; 

    p1 = malloc(1L << 28); /* 256 MB */ 

    p2 = malloc(1L << 8);  /* 256  B */ 

    p3 = malloc(1L << 32); /*   4 GB */ 

    p4 = malloc(1L << 8);  /* 256  B */ 

    /* Some print statements ... */ 

} 



Buffer Overflow 

A buffer is an array used to temporarily store data 
- You’ve probably seen “video buffering…” 
- The video is being written into a buffer before being played 

- Buffers can also store user input 

C does not check array bounds 
- Many Unix/Linux/C functions don’t check argument sizes 

- Allows overflowing (writing past the end) of buffers (arrays) 

“Buffer Overflow” = Writing past the end of an array 

Characteristics of the traditional Linux memory layout provide opportunities for 
malicious programs 
- Stack grows “backwards” in memory 

- Data and instructions both stored in the same memory 
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Buffer Overflow 

Stack grows down towards lower addresses 

Buffer grows up towards higher addresses 

If we write past the end of the array, we overwrite data on the stack! 
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 Enter input: hello  

-> no overflow 

 Enter input: helloabcdef  

-> overflow! 



What happens when there is an overflow? 

Buffer overflows on the stack 
can overwrite “interesting” 
data 
- Attackers just choose the right inputs 

Simplest form (sometimes 
called “stack smashing”) 
- Unchecked length on string input into 

bounded array causes overwriting of 
stack data 

- Try to change the return address of the 
current procedure 

Why is this a big deal? 
- It was the #1 technical cause of security 

vulnerabilities 
- #1 overall cause is social engineering / user 

ignorance 
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 Enter input: helloabcdef  

We’ve lost our way! 
Lost address of function pointer 
telling us which instruction to 
return to 



Malicious Buffer Overflow – Code Injection 

Buffer overflow bugs can allow 
attackers to execute arbitrary code on 
victim machines 
- Distressingly common in real programs 

Input string contains byte 
representation of executable code 

Overwrite return address A with 
address of buffer B 

When bar() executes ret, will jump to 
exploit code 
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void foo(){ 

  bar(); 

A:... 

} 

int bar() { 

  char buf[64];  

  gets(buf);  

  ... 

  return ...;  

} 

return address A 

https://www.gao.gov/assets/700/694913.pdf


Examples 

Original “Internet worm” (1988) 
- Early versions of the finger server (fingerd) used gets() to 

read the argument sent by the client: finger 
droh@cs.cmu.edu 

- Worm attacked fingerd server with phony argument: 
- finger "exploit-code padding new-return-addr" 

- Exploit code:  executed a root shell on the victim machine with a direct 
connection to the attacker 

- Robert Morris is now a professor at MIT, first person 
convicted under the ‘86 Computer Fraud and Abuse Act 
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Heartbleed (2014, affected 17% of servers) 
- Buffer over-read in OpenSSL 

- “Heartbeat” packet 
- Specifies length of message and server echoes it back 

- Library just “trusted” this length 

- Allowed attackers to read contents of memory anywhere they wanted 

- Est. 17% of Internet affected 

- Similar issue in Cloudbleed (2017) 

 



Protect Your Code! 

Employ system-level protections 
- Code on the Stack is not executable 

- Randomized Stack offsets 

Avoid overflow vulnerabilities 
- Use library routines that limit string lengths 

- Use a language that makes them impossible 

Have compiler use “stack canaries” 
- place special value (“canary”) on stack just beyond buffer 
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System Level Protections 

Non-executable code segments 

In traditional x86, can mark region of memory as either “read-only” or “writeable” 
- Can execute anything readable 

x86-64 added  explicit “execute” permission 

Stack marked as non-executable 
- Do NOT execute code in Stack, Static Data, or Heap regions 
- Hardware support needed 

Works well, but can’t always use it 
Many embedded devices do not have this 
protection 
- Cars 
- Smart homes 
- Pacemakers 

Some exploits still work! 
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Randomized stack offsets 
- At start of program, allocate random amount of space 

on stack 

- Shifts stack addresses for entire program 
- Addresses will vary from one run to another 

- Makes it difficult for hacker to predict beginning of 
inserted code 

 



Avoid Overflow Vulnerabilities 

Use library routines that limit string lengths 
- fgets instead of gets (2nd argument to fgets sets limit) 

- strncpy instead of strcpy 

- Don’t use scanf with %s conversion specification 
- Use fgets to read the string 

- Or use %ns where n is a suitable integer 

 

Alternatively, don’t use C - use a language that does array index bounds check 
- Buffer overflow is impossible in Java 

- ArrayIndexOutOfBoundsException 

- Rust language was designed with security in mind 
- Panics on index out of bounds, plus more protections 
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/* Echo Line */ 

void echo() 

{ 

    char buf[8];  /* Way too small! */ 

    fgets(buf, 8, stdin); 

    puts(buf); 

} 



Stack Canaries 

Basic Idea:  place special value (“canary”) on stack just beyond buffer 
- Secret value that is randomized before main() 

- Placed between buffer and return address 

- Check for corruption before exiting function 

GCC implementation 
-  -fstack-protector 
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unix>./buf 

Enter string: 12345678 

12345678 

unix> ./buf 

Enter string: 123456789 

*** stack smashing detected *** 



Questions 
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