
Lecture 25: Assembly
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #25

Log onto pollev.com/cse374

Or

Text CSE374 to 22333

http://pollev.com/cse374
http://pollev.com/cse374

Administrivia

HW 4 posted -> Extra credit due date Thursday Dec 3rd

HW 5 (final HW) coming later today

HW 6 extra credit releasing next week

2 more exercises coming – 1 later today, 1 next week

Final review assignment will release last week of quarter

End of quarter due date Wednesday December 16th @ 9pm

2 CSE 374 AU 20 - KASEY CHAMPION

THANK YOU FOR YOUR PATIENCE

Decriminalizing Our College Campuses
Date: Thursday, December 3, 2020

Time: 6-8 pm

Location: Zoom link will be emailed to everyone who RSVPs

RSVP link: https://forms.gle/5FSZQsFTgAaYKUh56

https://forms.gle/5FSZQsFTgAaYKUh56

Review: General Memory Layout

Stack
- Local variables (procedure context)

Heap
- Dynamically allocated as needed

- malloc(), calloc(), new, …

Statically allocated Data
- Read/write: global variables (Static Data)

- Read-only: string literals (Literals)

Code/Instructions
- Executable machine instructions

- Read-only

3 CSE 374 AU 20 - KASEY CHAMPION

Where does everything go?

4 CSE 374 AU 20 - KASEY CHAMPION

char big_array[1L<<24]; /* 16 MB */

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()

{

 void *p1, *p2, *p3, *p4;

 int local = 0;

 p1 = malloc(1L << 28); /* 256 MB */

 p2 = malloc(1L << 8); /* 256 B */

 p3 = malloc(1L << 32); /* 4 GB */

 p4 = malloc(1L << 8); /* 256 B */

 /* Some print statements ... */

}

Hardware Software Interface

5 CSE 374 AU 20 - KASEY CHAMPION

From Human to Computer

C /C++ is translated directly into assembly by compiler
- Other languages may be translated into another form

- Java is translated into an assembly-like form, which is then run by the Java interpreter/runtime

- The Java runtime is executing assembly instructions!

- Some languages are directly interpreted without being translated into another form

- Most Bash implementations will directly interpret the commands without compiling

- Python can do either. It can be used as an interpreter or compile scripts

Assembler translates assembly into machine code

6 CSE 374 AU 20 - KASEY CHAMPION

#include <stdio.h>

int main()
{
 char name[20];
 …
 return 0;
}

push ebp
mov ebp, esp
sub esp, 0C0h

83 ec 08
83 e4 f0

b8 00 00 00 00

83 c0 0f

Compiler Assembler

C

Assembly
Machine Code

Computer Architecture

Instruction Set Architecture (ISA): The ”programming language” of the processor,
the syntax and language of how to give commands to the processor.
- There are a set of ISAs that are supported by a larger collection of microarchitectures
- Ex: x86, ARM ISA, TI DSPs ISA

The ISA defines:
- The system’s state (e.g. registers, memory, program counter)

- The instructions the CPU can execute

- The effect that each of these instructions will have on the system state

Microarchitecture: The way a specific processor executes a given ISA based on the
processor’s design.
- The Microarchitecture defines how the data (data path) moves through the parts of the processor
(control path), often represented as a data flow diagram.

- microarchitecture dictates the flow of instructions through items within the processor such as logic
gates, registers, Arithmetic Logic Units (ALUs)

7 CSE 374 AU 20 - KASEY CHAMPION

Mainstream ISAs

8 CSE 374 AU 20 - KASEY CHAMPION

Macbooks & PCs

(Core i3, i5, i7, M)

x86-64 instruction set Smartphone (and similar) devices

(iPhone, iPad, Raspberry Pi)

ARM instruction set

Digital home & networking

(Blu-ray, Playstation 2)

MIPS instruction set

So… who writes assembly?

Chances are, you’ll never write a program in assembly!
- BUT understanding assembly is the key to the machine-level execution model.

Some use cases for assembly:
- When working in embedded where you can’t trust the compiler to reduce program size as efficiently as

possible

- When special purpose subroutines are required that are not possible in higher level languages

- Behavior of programs in the presence of bugs
- When high-level language model breaks down

- Tuning program performance

- Implementing systems software

- Fighting malicious software
- Distributed software is in binary form

9 CSE 374 AU 20 - KASEY CHAMPION

Assembly Programmer’s View

Programmer-visible state
- PC: the Program Counter (%rip in x86-64)

- Address of next instruction

- Named registers
- Heavily used program data

- Condition codes
- Store status information about most recent arithmetic operation

- Used for conditional branching

10 CSE 374 AU 20 - KASEY CHAMPION

Registers

A location in the CPU that stores a small amount of data, which can be accessed very quickly (once
every clock cycle)

Registers have names, not addresses
- In assembly, they start with % (e.g. %rsi)

Registers are at the heart of assembly programming
- They are a precious commodity in all architectures, but especially x86

11 CSE 374 AU 20 - KASEY CHAMPION

Memory

Addresses (EX: 0x7FFFD024C3DC)

Big ~ 8 GiB

Slow ~50-100 ns

Dynamic - Can “grow” as needed
 while program runs

Registers

Names (EX: %rdi)

Small - (16 x 8 B) = 128 B

Fast - sub-nanosecond timescale

Static - fixed number in hardware

Assembly Instruction Basics

Assembly instructions fall into one of 3
categories:

Transfer data between memory and register
- Load data from memory into register

- %reg = Mem[address]

- Store register data into memory

- Mem[address] = %reg

Perform arithmetic operation on register or
memory data
- c = a + b; z = x << y; i = h & g;

Control flow: what instruction to execute next
- Unconditional jumps to/from procedures

- Conditional branches

12 CSE 374 AU 20 - KASEY CHAMPION

Items in Assembly fall into one of 3 operand
categories:

Immediate: Constant integer data
- Examples: $0x400, $-533

- Like C literal, but prefixed with ‘$’
- Encoded with 1, 2, 4, or 8 bytes

Register: 1 of 16 integer registers
- Examples: %rax, %r13

Memory: Consecutive bytes of memory at
a computed address
- Simplest example: (%rax)

Example: Moving Data

General form: mov_ source, destination
- Missing letter (_) specifies size of operands

- Lots of these in typical code

Examples:

movb src, dst
- Move 1-byte “byte”

movw src, dst
- Move 2-byte “word”

movl src, dst
- Move 4-byte “long word”

movq src, dst
- Move 8-byte “quad word”

13 CSE 374 AU 20 - KASEY CHAMPION

 Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax rax = 4;

Mem movq $-147, (%rax) *rax = -147;

Reg
Reg movq %rax, %rdx rdx = rax;

Mem movq %rax, (%rdx) *rdx = rax;

Mem Reg movq (%rax), %rdx rdx = *rax;

Assume we have two variables called rax and rdx.

Which assembly instruction does *rdx = rax?

1.movq %rdx, %rax

2.movq (%rdx), %rax

3.movq %rax, (%rdx)

4.movq (%rax), %rdx

Example: Arithmetic Operations

15 CSE 374 AU 20 - KASEY CHAMPION

Register Use(s)

%rdi 1
st

 argument (x)

%rsi 2
nd

 argument (y)

%rax return value

Example: swap()

16 CSE 374 AU 20 - KASEY CHAMPION

Example: swap()

17 CSE 374 AU 20 - KASEY CHAMPION

123

456

Example: swap()

18 CSE 374 AU 20 - KASEY CHAMPION

123

456

456

123

Where does everything go?

19 CSE 374 AU 20 - KASEY CHAMPION

char big_array[1L<<24]; /* 16 MB */

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()

{

 void *p1, *p2, *p3, *p4;

 int local = 0;

 p1 = malloc(1L << 28); /* 256 MB */

 p2 = malloc(1L << 8); /* 256 B */

 p3 = malloc(1L << 32); /* 4 GB */

 p4 = malloc(1L << 8); /* 256 B */

 /* Some print statements ... */

}

Buffer Overflow

A buffer is an array used to temporarily store data
- You’ve probably seen “video buffering…”
- The video is being written into a buffer before being played

- Buffers can also store user input

C does not check array bounds
- Many Unix/Linux/C functions don’t check argument sizes

- Allows overflowing (writing past the end) of buffers (arrays)

“Buffer Overflow” = Writing past the end of an array

Characteristics of the traditional Linux memory layout provide opportunities for
malicious programs
- Stack grows “backwards” in memory

- Data and instructions both stored in the same memory

20 CSE 374 AU 20 - KASEY CHAMPION

Buffer Overflow

Stack grows down towards lower addresses

Buffer grows up towards higher addresses

If we write past the end of the array, we overwrite data on the stack!

21 CSE 374 AU 20 - KASEY CHAMPION

 Enter input: hello

-> no overflow

 Enter input: helloabcdef

-> overflow!

What happens when there is an overflow?

Buffer overflows on the stack
can overwrite “interesting”
data
- Attackers just choose the right inputs

Simplest form (sometimes
called “stack smashing”)
- Unchecked length on string input into

bounded array causes overwriting of
stack data

- Try to change the return address of the
current procedure

Why is this a big deal?
- It was the #1 technical cause of security

vulnerabilities
- #1 overall cause is social engineering / user

ignorance

22 CSE 374 AU 20 - KASEY CHAMPION

 Enter input: helloabcdef

We’ve lost our way!
Lost address of function pointer
telling us which instruction to
return to

Malicious Buffer Overflow – Code Injection

Buffer overflow bugs can allow
attackers to execute arbitrary code on
victim machines
- Distressingly common in real programs

Input string contains byte
representation of executable code

Overwrite return address A with
address of buffer B

When bar() executes ret, will jump to
exploit code

23 CSE 374 AU 20 - KASEY CHAMPION https://www.gao.gov/assets/700/694913.pdf

void foo(){

 bar();

A:...

}

int bar() {

 char buf[64];

 gets(buf);

 ...

 return ...;

}

return address A

https://www.gao.gov/assets/700/694913.pdf

Examples

Original “Internet worm” (1988)
- Early versions of the finger server (fingerd) used gets() to

read the argument sent by the client: finger
droh@cs.cmu.edu

- Worm attacked fingerd server with phony argument:
- finger "exploit-code padding new-return-addr"

- Exploit code: executed a root shell on the victim machine with a direct
connection to the attacker

- Robert Morris is now a professor at MIT, first person
convicted under the ‘86 Computer Fraud and Abuse Act

24 CSE 374 AU 20 - KASEY CHAMPION

Heartbleed (2014, affected 17% of servers)
- Buffer over-read in OpenSSL

- “Heartbeat” packet
- Specifies length of message and server echoes it back

- Library just “trusted” this length

- Allowed attackers to read contents of memory anywhere they wanted

- Est. 17% of Internet affected

- Similar issue in Cloudbleed (2017)

Protect Your Code!

Employ system-level protections
- Code on the Stack is not executable

- Randomized Stack offsets

Avoid overflow vulnerabilities
- Use library routines that limit string lengths

- Use a language that makes them impossible

Have compiler use “stack canaries”
- place special value (“canary”) on stack just beyond buffer

25 CSE 374 AU 20 - KASEY CHAMPION

System Level Protections

Non-executable code segments

In traditional x86, can mark region of memory as either “read-only” or “writeable”
- Can execute anything readable

x86-64 added explicit “execute” permission

Stack marked as non-executable
- Do NOT execute code in Stack, Static Data, or Heap regions
- Hardware support needed

Works well, but can’t always use it
Many embedded devices do not have this
protection
- Cars
- Smart homes
- Pacemakers

Some exploits still work!

26 CSE 374 AU 20 - KASEY CHAMPION

Randomized stack offsets
- At start of program, allocate random amount of space

on stack

- Shifts stack addresses for entire program
- Addresses will vary from one run to another

- Makes it difficult for hacker to predict beginning of
inserted code

Avoid Overflow Vulnerabilities

Use library routines that limit string lengths
- fgets instead of gets (2nd argument to fgets sets limit)

- strncpy instead of strcpy

- Don’t use scanf with %s conversion specification
- Use fgets to read the string

- Or use %ns where n is a suitable integer

Alternatively, don’t use C - use a language that does array index bounds check
- Buffer overflow is impossible in Java

- ArrayIndexOutOfBoundsException

- Rust language was designed with security in mind
- Panics on index out of bounds, plus more protections

27 CSE 374 AU 20 - KASEY CHAMPION

/* Echo Line */

void echo()

{

 char buf[8]; /* Way too small! */

 fgets(buf, 8, stdin);

 puts(buf);

}

Stack Canaries

Basic Idea: place special value (“canary”) on stack just beyond buffer
- Secret value that is randomized before main()

- Placed between buffer and return address

- Check for corruption before exiting function

GCC implementation
- -fstack-protector

28 CSE 374 AU 20 - KASEY CHAMPION

unix>./buf

Enter string: 12345678

12345678

unix> ./buf

Enter string: 123456789

*** stack smashing detected ***

Questions

29 CSE 374 AU 20 - KASEY CHAMPION

