Lecture Participation Poll #24
g Log onto pollev.com/cse374 :
R Or b
Text CSE374 to 22333 R

e

I_e Ct u re 24: C + + CSE 374: Intermediate

Programming Concepts and

Inheritance | o

http://pollev.com/cse374

Administrivia

*HW 3 posted Friday -> Extra credit due date Wednesday Nov 25th @ 9pm
*HW 4 posted Tuesday -> Extra credit due date Wednesday
=End of quarter due date Wednesday December 161" @ 9pm

#ifndef BANKACCOUNT H
#define BANKACCOUNT H

#include <iostream>
namespace bank {

class BankAccount {

public:
explicit BankAccount (const std::string& accountHolder) ;
BankAccount (const BankAccounté& other) = delete;

// Accessors

int getBalance () const;

int getAccountId() const;

const std::stringé& getAccountHolder () const;

// Modifier - add money.
void deposit (int amount) ;

// different for every type of account,
// require derived classes to implement
virtual void withdraw (int amount) = 0;

protected:
// derived classes can modify the balance.
volid setBalance (int balance);

private:
const std::string accountHolder ;
const int accountId ;
int balance ;

static int accountCount ;
b
}

#endif BankAccount.cc

#ifndef SAVINGSACCOUNT H
#define SAVINGSACCOUNT H

#include "BankAccount.h"
namespace bank {
class SavingsAccount

public:
SavingsAccount (double interestRate, std::string name);

public BankAccount {

double getInterestRate () const;
virtual void withdraw (int amount) override;

private:
bool isNewMonth (time t* curTime);

double interestRate ;
time t lastMonth ;
int numTransactionsInMonth ;

}i

#endif SavingsAccount.cc

Self Check

ml. al
m2. a2
b2
m3.
b3

#include <iostream>
using namespace std;

class A {

public:
A() { cout << "a ()" << endl; }
~A () { cout << "~a" << endl; }
void ml () { cout << "al" << endl;
void m2 () { cout << "a2" << endl;

}s

// class B inherits from class A
class B : public A {

public:
B() { cout << "b()" << endl; }
~B() { cout << "~b" << endl; }
void m2 () { cout << A::m2();

<< "b2" << endl;
void m3() { cout << "b3" << endl;
};

int main () {
//B* x = new B();
A* x = new B();
x=>ml () ;
x=>m2 () ;
x=>m3 () ;

delete x;

Suppose that...

=You want to write a function to
compare two ints

=You want to write a function to
compare two strings
Function overloading!

*The two implementations of compare
are nearly identical!

What if we wanted a version of compare for every
comparable type?

We could write (many) more functions, but that's
obviously wasteful and redundant

="What we'd prefer to do is write “generic
code”
Code that is type-independent

Code that is compile-type polymorphic across
types

// returns 0 if equal, 1 if valuel is bigger,
otherwise
int compare (const inté& valuel,
value?) {
1f (valuel < wvalue?)
1f (value?2 < valuel)

return 0;

}

const 1nté&

return -1;

return 1;

// returns 0 if equal, 1 if valuel is bigger,
otherwise
int compare (const stringé& valuel,
value?2) {
if (valuel < wvalue?)
1f (value?2 < valuel)

return 0;

return -1;

return 1;

-1

const stringé&

Polymorphism in C++

=|n Java: PromisedType var = new ActualType|();

var is a reference (different term than C++ reference) to an object of ActualType on the Heap
ActualType must be the same class or a subclass of PromisedType

5ln C++: PromisedType* var p = new ActualType();
var_p is a pointer to an object of ActualType on the Heap
ActualType must be the same or a derived class of PromisedType
(also works with references)

PromisedType defines the interface (i.e. what can be called on var_p), but ActualType may determine which
version gets invoked

=polymorphism is the ability to access different objects through the same interface

Templates in C++

*C++ has the notion of templates

A function or class that accepts a type as a parameter
You define the function or class once in a type-agnostic way
When you invoke the function or instantiate the class, you specify (one or more) types or values as arguments to it

At compile-time, the compiler will generate the “specialized” code from your template using the types you
provided

Your template definition is NOT runnable code

Code is only generated if you use your template

Function Template

// returns 0 if equal, 1 if valuel is bigger, -1 otherwise
int compare (const int& valuel, const int& value2) {

if (valuel < wvalue2) return -1;

if (value?2 < wvaluel) return 1;

return O;

// returns 0 if equal, 1 if valuel is bigger, -1 otherwise
int compare (const stringé& valuel, const stringé& value2) {
if (valuel < wvalue?) return -1;

if (value?2 < wvaluel) return 1;
return O; #include <iostream>

} #include <string>

// returns 0 if equal,
template <typename T>

1if (valuel < wvalue?2)
if (value2 < wvaluel)
return 0;

int main(int argc,

return EXIT SUCCESS;

int compare (const T é&valuel,

std::string h("hello"),
std: :cout << compare<int> (10,
std: :cout << compare<std::string>(h,
std: :cout << compare<double>(50.5,

1 if valuel is bigger, -1 otherwise

// <...> can also be written <class T>
const T &value2) {

return -1;

return 1;

char **argv) {

w("world");

20) << std::endl;

w) << std::endl;
50.6) << std::endl;

What's going on?

*The compiler doesn’'t generate any
code when it sees the template
function

It doesn’t know what code to generate yet, since it
doesn’t know what types are involved

"When the compiler sees the function
being used, then it understands what
types are involved

It generates the instantiation of the template and
compiles it (kind of like macro expansion)

The compiler generates template instantiations for each type
used as a template parameter

#include <iostream>
#include <string>

// returns 0 if equal,
// -1 otherwise
template <typename T>
int compare (const T &valuel, const T &valueZ2)

1f (valuel < value2) return -1;

1f (value2?2 < valuel) return 1;

return 0;

}

1 if valuel is bigger,

int main (int argc, char **argv) {
std::string h("hello"), w("world");
std::cout << compare (10, 20) << std::endl;
std::cout << compare (h, w) << std::endl;
return EXIT SUCCESS;

{

// ok
// ok

Class Templates

=Templates are useful for classes as well

(In fact, that was one of the main motivations for
templates!)

*"Imagine we want a class that holds a
Falr of things that we can set and get

he value of, but we don't know what
data type the things will be

=Thing is replaced with template
argument when class is instantiated

The class template parameter name is in scope of
’%Re template class definition and can be freely used
ere

Class template member functions are template
functions with template parameters that match
those of the class template

These member functions must be defined as template
fulnctl)on outside of the class template definition (if not written
inline

The template parameter name does not need to match that
used in the template class definition, but really should

Only template methods that are actually called in
your program are instantiated (but this’is an
implementation detail)

Pair.h

#ifndef PAIR H
#define PAIR H

template <typename Thing> class Pair {
public:
Pair () { };

Thing get first() const { return first ; }
Thing get second() const { return second ;
void set first(Thing ©me);
void set second(Thing ©me) ;
void Swap();

private:
Thing first , second ;

¥

#include "Pair.cc"

#endif // PAIR H

}

Pair Function Definition

Pair.cpp

template <typename Thing> .
void Pair<Thing>::set first(Thing ©me) { UsePair.cpp

first = copyme; #include <iostream>
} #include <string>
template <typename Thing> #include "Pair.h"
void Pair<Thing>::set second(Thing ©me) {

second = copyme; int main (int argc, char** argv) {
} Pair<std::string> ps;

std::string x("foo"), y("bar");

template <typename Thing>
void Pair<Thing>::Swap () { ps.set first(x);

Thing tmp = first ; ps.set_second(y);

first = second ; ps.Swap () ;

second = tmp; std::cout << ps << std::endl;
}

return EXIT SUCCESS;

template <typename T> }
std::ostream &operator<<(std::ostream &out, const Pair<T>& p) {

return out << "Pair (" << p.get first() << ", "

<< p.get second() << ")";

}

CSE 374 AU 20 - KASEY CHAMPION 11

Abstract Methods & Classes

=Sometimes we want to include a function in a class but only implement it in derived

classes
In Java, we would use an abstract method

In C++, we use a “pure virtual” function
Example: virtual string noise() = 0;

=virtual string noise() = 0,

=A class containing any pure virtual methods is abstract
You can't create instances of an abstract class
Extend abstract classes and override methods to use them

=A class containing only pure virtual methods is the same as a Java interface
Pure type specification without implementations

Virtual Functions

=A virtual function is a member function that is declared within a base class and is
overridden by a derived class,
Ensures correct function is called for object regardless of reference type (facilitate polymorphism)
A method-call is virtual if the method called is market virtual or overrides a virtual method
a non-virtual method call is resolved using the compile-time type of the receiver expression

a virtual method call is resolved using the run-time class of the receiver object (what the expression evaluates
to) AKA: dynamic dispatch

=pure virtual functions

to maximize code sharing sometimes you will need “theoretical” objects or functions that will be shared across
more specific implementations. (EX: “bank account” is too general to exist, instead you use it to share code
across “checking account” and “business account”)

When defining abstract classes sometimes you want to declare a function that must be implemented by all
derived classes, you can create a virtual function:

virtual void withdraw (int amount) = 0 ; class C {

virtual tO0O m(tl, t2,..,tn) = 0;

s

Dynamic Dispatch

-D)(namic dispatch is the process of selecting which implementation of a polymorphic operation to
call at runtime

=Usually, when a derived function is available for an object, we want the derived function to be
invoked
This requires a run time decision of what code to invoke

=A member function invoked on an object should be the most-derived function accessible to the
object’s visible type

Can determine what to invoke from the object itself

=Example:
void PrintStock (Stock* s) { s—->Print(); }

=Calls the appropriate print () without knowing the actual type of *s, other than it is some sort of stock
=Functions just like Java

=Unlike Java: Prefix the member function declaration with the virtual keyword
Derived/child functions don't need to repeat virtual, but was traditionally good style to do so
This is how method calls work in Java (no virtual keyword needed)
You almost always want functions to be virtual

Dynamic Dispatch

Stock.cc

double Stock::GetMarketValue () const ({
return get shares () * get share price();

}

double Stock::GetProfit() const {
return GetMarketValue () - GetCost();

double DividendStock: :GetMarketValue () const {
return get_shares() * get share price() + dividends ;

}

double "DividendStock"::GetProfit () const {
return GetMarketValue () - GetCost () ;

// 1inherited

DividendStock.cc

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend() ;
DividendStock* ds = ÷nd;
Stock* s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ;

// Invokes DividendStock::GetMarketValue ()
s->GetMarketValue () ;

// invokes Stock::GetProfit(),

// since that method 1s inherited.

// Stock::GetProfit() invokes

// DividendStock: :GetMarketValue (),

// since that 1s the most-derived accessible
function.

s->GetProfit () ;

CSE 374 AU 20 - KASEY CHAMPION 15

Most-Derived Self-Check

class A {
public:

virtual void Foo() ;

s

class B : public A {
public:

virtual void Foo() ;

s

class C : public B {
Y

class D : public C {
public:

virtual void Foo () ;

b

class E : public C {
I

void Bar () {
A* a ptr;
C ¢y
E e;

// Q1:
a ptr = &cy
a ptr->Foo () ;

// Q2

a ptr = &ey

a ptr->Foo () ;
}

Q1

Q2

CSE 374 AU 20 - KASEY CHAMPION

16

How does dynamic dispatch work?

=The compiler produces Stock.o from just Stock.cc
It doesn’t know that DividendStock exists during this process

So then how does the emitted code know to call Stock::GetMarketValue() or DividendStock::GetMarketValue()
or something else that might not exist yet?

i j 1
Function pointers!!! Stock.h

virtual double Stock::GetMarketValue () const;
virtual double Stock::GetProfit () const;

Stock.cpp

double Stock::GetMarketValue () const {
return get shares() * get share price();

}

double Stock: :GetProfit () const {
return GetMarketValue () - GetCost () ;

}

vtables and vptrs

=|f a class contains any virtual
methods, the compiler emits:

A (single) virtual function table (vtable) for
the class

Contains a function pointer for each virtual method in
the class

The pointers in the vtable point to the most-derived
function for that class

A virtual table pointer (vptr) for each object
(nstance

A pointer to a virtual table as a "hidden” member
variable

When the object’s constructor is invoked, the vptr is
initialized to point to the vtable for the object’s class

Thus, the vptr “remembers” what class the object is

vptr

|

vtable
o =3 Cash::GetMarketValue ()
® =P Cash::GetCost ()
*—
~=> Cash::GetProfit ()
—
> stock: :GetMarketValue ()
k—
.~\ Stock::GetCost ()
Stock::GetProfit ()
DividendStock::GetMarketValue ()

Dynamic Dispatch Visual

Dynamic Dispatch

Point object

header |vtable ptr

Point vtable: .\

.F-__-

3DPoint object

a—

samePlace ()

code for Point’s

code for Point ()

il

header | vtable R % z
/ / code for
3DPoint vtable: ¢ \ -
code for 3DPoint’s
samePlace ()
Java: C pseudo-translation:
Point p = ?22°7; // works regardless of what p is

return p.samePlace (q);

return p->vtable[l] (p,

q) ; 2

CSE 374 AU 20 - KASEY CHAMPION

19

C++ Smart Pointers

="Wouldn't it be nice if pointers just got delete'd for us?

=A smart pointer is an object that stores a pointer to a heap-allocated object
A smart pointer looks and behaves like a regular C++ pointer

By overloading *, ->, [], etc.
These can help you manage memory
The smart pointer will delete the pointed-to object at the right time including invoking the object’s destructor

When that is depends on what kind of smart pointer you use
With correct use of smart pointers, you no longer have to remember when to delete new'd memory!

C++ Standard Libraries

=C++'s Standard Library consists of four major pieces:
The entire C standard library
C++'s input/output stream library
std::cin, std::cout, stringstreams, fstreams, etc.

C++'s standard template library (STL)

Containers, iterators, algorithms (sort, find, etc.), numerics

C+'+'s miscellaneous library
Strings, exceptions, memory allocation, localization

Standard Template Library(STL) Containers

=A container is an object that stores (in memory) a collection of other objects
(elements)
Implemented as class templates, so hugely flexible

=Several different classes of container
Sequence containers (vector, deque, list, ...)
Associative containers (set, map, multiset, multimap, bitset, ...)
Differ in algorithmic cost and supported operations

=STL containers store by value, not by reference
When you insert an object, the container makes a copy
If the container needs to rearrange objects, it makes copies

e.g. if you sort a vector, it will make many, many copies
e.g. if you insert into a map, that may trigger several copies

What if you don’t want this (disabled copy constructor or copying is expensive)?
Use smart pointers!

STL Vector

#include <iostream>
*A generic, dynamically resizable array [inomae Treetor |
http://www.cplusplus.com/reference/stl/vector/vector/
Elements are store in contiguous memory locations

Elements can be accessed using pointer arithmetic if you'd like int main(int argc, char** argv) {

using namespace std;

Random access is O(1) time Tracer a, b, c;
. . i ; tor<T > ;
Adding/removing from the end is cheap (amortized veetorsiracers vee

constant time) cout << "vec.push back " << a << endl;
Inserting/deleting from the middle or start is expensive vec.push_back (a) ;
(Hneartwne) cout << "vec.push back " << b << endl;
vec.push back (b) ;
cout << "wvec.push back " << ¢ << endl;
vec.push back(c);

cout << "vec[0]" << endl << vec[0] << endl;
cout << "vec[2]" << endl << vec[2] << endl;

return EXIT SUCCESS;

http://www.cplusplus.com/reference/stl/vector/vector/

STL Iterator

=Fach container class has an

associated iterator class

(e.g. vector<int>:iterator) used to

iterate through elements of the

container
http://www.cplusplus.com/reference/std/iterato

I/
lterator range is from begin up to end i.e,,
[begin , end)
end is one past the last container element!
Some container iterators support more
operations than others
All can be incremented (++), copied, copy-constructed
Some can be dereferenced on RHS (e.g. x = *it;)
Some can be dereferenced on LHS (e.g. *it = x;)
Some can be decremented (--)

Some support random access ([], +, -, +=, -=, <, >
operators)

#include <vector>

#include "Tracer.h"

using namespace std;

int main (int argc, char** argv) {
Tracer a, b, c;
vector<Tracer> vec;
vec.push back(a);
vec.push back (b);

vec.push back (c)

cout << "Iterating:" << endl;
vector<Tracer>::1i1terator it;

for (it = vec.begin(); it < vec.end();

cout << *it << endl;
}
cout << "Done iterating!" << endl;
return EXIT SUCCESS;

it++)

http://www.cplusplus.com/reference/std/iterator/

STL Algorithms

=A set of functions to be used on ranges of
elements

Range: any sequence that can be accessed through
(terators or pointers, like arrays or some of the containers

=General form: algorithm(begin, end, ...);

=Algorithms operate directly on range
elements rather than the containers they live
In

Make use of elements’ copy ctor, =, ==, I=, <

Some do not modify elements
e.g. find, count, for_each, min_element, binary_search

Some do modify elements
e.g. sort, transform, copy, swap

#include <vector>
#include <algorithm>
#include "Tracer.h"
using namespace std;

void PrintOut (const Traceré& p) |
cout << " printout: " << p << endl;

}

int main (int argc, char** argv) {
Tracer a, b, c;
vector<Tracer> vec;

vec.push back(c);

vec.push back(a);

vec.push back (b);

cout << "sort:" << endl;

sort (vec.begin (), vec.end());

cout << "done sort!" << endl;

for each(vec.begin(), vec.end(),
&PrintOut) ;

return 0;

}

Questions

CSE 374 AU 20 - KASEY CHAMPION 26

RAII

="Resource Acquisition is Initialization"

=Design pattern at the core of C++

=\When you create an object, acquire resources
Create = constructor

Acquire = allocate (e.g. memory, files)

*When the object is destroyed, release
resources

Destroy = destructor
Release = deallocate

=When used correctly, makes code safer and
easier to read

char* return msg c() {
int size = strlen("hello")
char* str = malloc(size);
strncpy (str, "hello", size)
return str;

|

.
14

1;

std::string return msg cpp ()
std::string str("hello");
return str;

{

using namespace std;

char* sl = return msg c();
cout << sl << endl;
string s2 = return msg cpp():;

cout << s2 << endl;

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

RAIl Example

=Which do you prefer?
*Where is the bug?

char* return msg c() {
int size = strlen("hello") + 1;
char* str = malloc(size);

strncpy (str, "hello", size);
return str;

std::string return msg cpp() {

std::string str ("hello");
return str;

using namespace std;

char* sl = return msg c();
cout << sl << endl;
string s2 = return msg cpp();

cout << s2 << endl;

Compiler Optimization

*The compiler sometimes uses a “return by value optimization” or “move semantics”

to eliminate unnecessary copies
Sometimes you might not see a constructor get invoked when you might expect it

Point foo () {

Point vy; // default ctor

return y; // copy ctor? optimized?
}
Point x(1, 2); // two-ints-argument ctor
Point y = Xx; // copy ctor
Point z = foo(); // copy ctor? optimized?

Namespaces

=Each namespace is a separate scope
Useful for avoiding symbol collisions!

*Namespace definition:

namespace name {
// declarations go here

}
Doesn’t end with a semi-colon and doesn’t add to the indentation of its contents

Creates a new namespace name if it did not exist, otherwise adds to the existing namespace (!)
This means that components (e.g. classes, functions) of a namespace can be defined in multiple source files

=*Namespaces vs classes
They seems somewhat similar, but classes are not namespaces:

There are no instances/objects of a namespace; a namespace is just a group of logically-related things (classes,
functions, etc.)

To access a member of a namespace, you must use the fully qualified name (i.e. nsp_name::member)
Unless you are using that namespace
You only used the fully qualified name of a class member when you are defining it outside of the scope of the class definition

Const

=C++ introduces the “const” keyword which declares a value that cannot change
=const int CURRENT _YEAR = 2020;

