
Lecture 21: C++ Objects
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #21

Log onto pollev.com/cse374
Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia

▪HW5 due date moved to Wed Dec 1

▪Office hours will shift a little next week

2CSE 374 AU 20 - KASEY CHAMPION

Malloc vs New

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything
arrays, structs, objects,

primitives

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

3CSE 374 AU 20 - KASEY CHAMPION

Dynamically Allocated Arrays

▪To dynamically allocate an array:

type* name = new type[size];

-calls default (zero-argument) constructor for each element
-convenient if there’s a good default for initialization

▪To dynamically deallocate an array:
-Use delete[] name;

- It is an incorrect to use “delete name;” on an array
- The compiler probably won’t catch this, though (!) because it can’t always tell if name* was allocated with new type[size];

or new type;

- Especially inside a function where a pointer parameter could point to a single item or an array and there’s no way to tell which!

- Result of wrong delete is undefined behavior

4CSE 374 AU 20 - KASEY CHAMPION

Arrays Example (Primitives)

5CSE 374 AU 20 - KASEY CHAMPION

#include "Point.h"

int main() {

int stack_int;

int* heap_int = new int;

int* heap_int_init = new int(12);

int stack_arr[3];

int* heap_arr = new int[3];

int* heap_arr_init_val = new int[3]();

int* heap_arr_init_lst = new int[3]{4, 5}; // C++11

...

delete heap_int; //

delete heap_int_init; //

delete heap_arr; //

delete[] heap_arr_init_val; //

return EXIT_SUCCESS;

}

arrays.cpp

Arrays Example (Objects)

6CSE 374 AU 20 - KASEY CHAMPION

arrays.cpp

#include "Point.h"

int main() {

...

Point stack_pt(1, 2);

Point* heap_pt = new Point(1, 2);

Point* heap_pt_arr_err = new Point[2];

Point* heap_pt_arr_init_lst = new Point[2]{{1, 2},

{3, 4}};

/

/ C++11

...

delete heap_pt;

delete[] heap_pt_arr_init_lst;

return EXIT_SUCCESS;

}

Pointers in C++
▪Work the same as in C, hooray!

▪A pointer is a variable containing an address
-Modifying the pointer doesn’t modify what it points to, but you can access/modify what it points to by

dereferencing

7CSE 374 AU 20 - KASEY CHAMPION

int main(int argc, char** argv) {

int x = 5, y = 10;

int* z = &x;

*z += 1; // sets x to 6

x += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y

*z += 1; // sets y (and *z) to 11

return EXIT_SUCCESS;

}

References in C++

▪A reference is an alias for another variable
-Alias: another name that is bound to the aliased variable
-Mutating a reference is mutating the aliased variable
- Introduced in C++ as part of the language

8CSE 374 AU 20 - KASEY CHAMPION

int main(int argc, char** argv) {

int x = 5, y = 10;

int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6

x += 1; // sets x (and z) to 7

z = y; // sets z (and x) to the value of y

z += 1; // sets z (and x) to 11

return EXIT_SUCCESS;

}

Pass by Reference

C++ allows you to use real pass-by-reference
-Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

9CSE 374 AU 20 - KASEY CHAMPION

void swap(int& x, int& y) {

int tmp = x;

x = y;

y = tmp;

}

int main(int argc, char** argv) {

int a = 5, b = 10;

swap(a, b);

cout << "a: " << a << "; b: " << b << endl;

return EXIT_SUCCESS;

}

▪A stylistic choice, not mandated by the
C++ language

▪Google C++ style guide suggests:
- Input parameters:

- Either use values (for primitive types like int or
small structs/objects)

- Or use const references (for complex
struct/object instances)

- Output parameters:

- Use unchangeable pointers referencing
changeable data

- Ordering:

- List input parameters first, then output
parameters last

- In C all function arguments are copies

-pointer arguments pass a copy of the
address value, original values will be
unaffected by changes to parameter

Structs in C vs Classes in C++

▪ In C, a struct can only contain data fields
-No methods and all fields are always accessible

▪ In C++, struct and class are (nearly) the same!
-Both can have methods and member visibility (public/private/protected)

-Minor difference: members are default public in a struct and default private in a class

-structs need to allocate heap memory so object will persist

▪Common style convention:
-Use struct for simple bundles of data

-Use class for abstractions with data + functions

10CSE 374 AU 20 - KASEY CHAMPION

Classes in C++
▪Unlike C structs

- Class definition is part of interface and should go in .h file
-Private members still must be included in definition (!)

- Typically put member function definitions into companion .cpp file with
implementation details
- Common exception: setter and getter methods

- These files can also include non-member functions that use the class

▪ Like java
- Fields & methods, static vs instance, constructors
- method overloading (functions, operators and constructors)

▪Not quite like Java
- access-modifier (eg private) syntax
- declaration separate from implementation (like C)
- funny constructor syntax, default parameters (eg, …=0)

▪Not at all like Java
- you can name files anything you want

- Typically a combination of Name.cpp and Name.h for class Name

- destructors and copy constructors
- virtual vs non-virtual

11CSE 374 AU 20 - KASEY CHAMPION

namespace mynamespace {

class MyClass {

private:

type fieldOne;

type fieldTwo;

public:

MyClass();

MyClass(type, type);

public:

type functionOne() {

// function definition

}

type functionTwo() {

// function definition

}

};

}

MyClass.h

Defining Classes in C++

▪Class Definition (in a .h file)

12CSE 374 AU 20 - KASEY CHAMPION

class Name {

public:

// public member definitions & declarations go here

private:

// private member definitions & declarations go here

}; // close class Name

▪Class Member Definition (in a .cpp file)

▪Members can be functions (methods) or data (variables)

▪ (1) define within the class definition OR (2) declare within the class definition and then
define elsewhere

returnType ClassName::MethodName(type1 param1, …, typeN paramN) {

// body statements

}

Name.h

Name.cpp

Anatomy of C++ Class

13CSE 374 AU 20 - KASEY CHAMPION

Rectangle.h

Access Control

▪Access modifiers for members:
-public: accessible to all parts of the program

-private: accessible to the member functions of the class
- Private to class, not object instances

-protected: accessible to member functions of the class and any derived classes (subclasses – more to come,
later)

▪Reminders:
-Access modifiers apply to all members that follow until another access modifier is reached

-If no access modifier is specified, struct members default to public and class members default to private

14CSE 374 AU 20 - KASEY CHAMPION

Class Definition (Member declaration)

15CSE 374 AU 20 - KASEY CHAMPION

#ifndef POINT_H_

#define POINT_H_

class Point {

public:

Point(const int x, const int y); // constructor

int get_x() const { return x_; } // inline member function

int get_y() const { return y_; } // inline member function

double Distance(const Point& p) const; // member function

void SetLocation(const int x, const int y); // member function

private:

int x_; // data member

int y_; // data member

}; // class Point

#endif // POINT_H_

Point.h

Class Member Definition

16CSE 374 AU 20 - KASEY CHAMPION

#include <cmath>

#include "Point.h"

Point::Point(const int x, const int y) {

x_ = x;

this->y_ = y; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {

// We can access p’s x_ and y_ variables either through the

// get_x(), get_y() accessor functions or the x_, y_ private

// member variables directly, since we’re in a member

// function of the same class.

double distance = (x_ - p.get_x()) * (x_ - p.get_x());

distance += (y_ - p.y_) * (y_ - p.y_);

return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {

x_ = x;

y_ = y;

}

Point.cpp

Class Usage

17CSE 374 AU 20 - KASEY CHAMPION

#include <iostream>

#include "Point.h"

using namespace std;

int main(int argc, char** argv) {

Point p1(1, 2); // allocate a new Point on the Stack

Point p2(4, 6); // allocate a new Point on the Stack

cout << "p1 is: (" << p1.get_x() << ", ";

cout << p1.get_y() << ")" << endl;

cout << "p2 is: (" << p2.get_x() << ", ";

cout << p2.get_y() << ")" << endl;

cout << "dist : " << p1.Distance(p2) << endl;

return 0;

}

usePoint.cpp

To allocate on the heap use the “new”
keyword
Point* p1 = new Point(1, 2);

Constructors in C++

▪A constructor initializes a newly-instantiated object
- A class can have multiple constructors that differ in parameters

- Which one is invoked depends on how the object is instantiated

▪Written with the class name as the method name:

Point(const int x, const int y);

- C++ will automatically create a synthesized default constructor if you have no user-defined constructors
- Takes no arguments and calls the default constructor on all non-“plain old data” (non-POD) member variables

- Synthesized default constructor will fail if you have non-initialized const or reference data members

▪ 4 different types of constructors
- default constructor – takes zero arguments. If you don’t define any constructors the compiler will generate one of

these for you (just like Java)
- copy constructor – takes a single parameter which is a const reference(const T&) to another object of the same

type, and initializes the fields of the new object as a copy of the fields in the referenced object
- user-defined constructors – initialize fields and take whatever arguments you specify
- conversion constructors – implicit, take a single argument. If you want a single argument constructor that is not

implicit must use the keyword “explicit” like: explicit String(const char* raw);

18CSE 374 AU 20 - KASEY CHAMPION

Synthesized Default Constructor

19CSE 374 AU 20 - KASEY CHAMPION

class SimplePoint {

public:

// no constructors declared!

int get_x() const { return x_; } // inline member function

int get_y() const { return y_; } // inline member function

double Distance(const SimplePoint& p) const;

void SetLocation(int x, int y);

private:

int x_; // data member

int y_; // data member

}; // class SimplePoint

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

SimplePoint x; // invokes synthesized default constructor

return EXIT_SUCCESS;

}

SimplePoint.h

SimplePoint.cpp

Synthesized Default Constructor

▪ If you define any constructors, C++ assumes you have defined all the ones you intend to be
available and will not add any others

20CSE 374 AU 20 - KASEY CHAMPION

#include "SimplePoint.h"

// defining a constructor with two arguments

SimplePoint::SimplePoint(const int x, const int y) {

x_ = x;

y_ = y;

}

void foo() {

SimplePoint x; // compiler error: if you define any

// ctors, C++ will NOT synthesize a

// default constructor for you.

SimplePoint y(1, 2); // works: invokes the 2-int-arguments

// constructor

}

Overloading Constructors

21CSE 374 AU 20 - KASEY CHAMPION

#include "SimplePoint.h"

// default constructor

SimplePoint::SimplePoint() {

x_ = 0;

y_ = 0;

}

// constructor with two arguments

SimplePoint::SimplePoint(const int x, const int y) {

x_ = x;

y_ = y;

}

void foo() {

SimplePoint x; // invokes the default constructor

SimplePoint y(1, 2); // invokes the 2-int-arguments ctor

SimplePoint a[3]; // invokes the default ctor 3 times

}

Copy Constructors

▪C++ has the notion of a copy constructor
-Used to create a new object as a copy of an existing object

-Initializer lists can also be used in copy constructors

- initializes a new bag of bits (new variable or parameter)

-assignment (=) replaces an existing value with a new one
- may need to clean up old state (free heap data?)

22CSE 374 AU 20 - KASEY CHAMPION

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor

Point::Point(const Point& copyme) {

x_ = copyme.x_;

y_ = copyme.y_;

}

void foo() {

Point x(1, 2); // invokes the 2-int-arguments constructor

Point y(x); // invokes the copy constructor

Point z = y; // also invokes the copy constructor

}

Synthesized Copy Constructor

▪ If you don’t define your own copy constructor, C++ will synthesize one for you
- It will do a shallow copy of all of the fields (i.e. member variables) of your class

-Sometimes the right thing; sometimes the wrong thing

23CSE 374 AU 20 - KASEY CHAMPION

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

SimplePoint x;

SimplePoint y(x); // invokes synthesized copy constructor

...

return EXIT_SUCCESS;

}

When Do Copies Happen?

▪The copy constructor is invoked if:
-You initialize an object from

another object of the same
type:

-You pass a non-reference
object as a value parameter
to a function:

-You return a non-reference
object value from a function:

24CSE 374 AU 20 - KASEY CHAMPION

Point x; // default ctor

Point y(x); // copy ctor

Point z = y; // copy ctor

void foo(Point x) { ... }

Point y; // default ctor

foo(y); // copy ctor

Point foo() {

Point y; // default ctor

return y; // copy ctor

}

Initialization Lists

▪C++ lets you optionally declare an initialization list as part of a constructor definition
- Initializes fields according to parameters in the list

-The following two are (nearly) identical:

25CSE 374 AU 20 - KASEY CHAMPION

Point::Point(const int x, const int y) {

x_ = x;

y_ = y;

std::cout << "Point constructed: (" << x_ << ",";

std::cout << y_<< ")" << std::endl;

}
// constructor with an initialization list

Point::Point(const int x, const int y) : x_(x), y_(y) {

std::cout << "Point constructed: (" << x_ << ",";

std::cout << y_<< ")" << std::endl;

}

Initialization vs Construction

▪ Data members in initializer list are initialized in the order they are defined in the class, not
by the initialization list ordering
-Data members that don’t appear in the initialization list are default initialized/constructed before body is

executed

▪ Initialization preferred to assignment to avoid extra steps
-Never mix the two styles

26CSE 374 AU 20 - KASEY CHAMPION

class Point3D {

public:

// constructor with 3 int arguments

Point3D(const int x, const int y, const int z) : y_(y), x_(x) {

z_ = z;

}

private:

int x_, y_, z_; // data members

}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

Destructors

▪C++ has the notion of a destructor
-Like “free” in c. In fact, invokes free under the hood to clean up when freeing memory

-Invoked automatically when a class instance is deleted, goes out of scope, etc. (even via exceptions or other
causes!)
- Do not need to call destructors explicitly

-Place to put your cleanup code – free any dynamic storage or other resources owned by the object

-Standard C++ idiom for managing dynamic resources
- Slogan: “Resource Acquisition Is Initialization” (RAII)

27CSE 374 AU 20 - KASEY CHAMPION

Point::~Point() { // destructor

// do any cleanup needed when a Point object goes away

// (nothing to do here since we have no dynamic resources)

}

Nonmember Functions

▪ “Nonmember functions” are just normal functions that happen to use some class
- Called like a regular function instead of as a member of a class object instance

- These do not have access to the class’ private members

▪Useful nonmember functions often included as part of interface to a class
- Declaration goes in header file, but outside of class definition

▪A class can give a nonmember function (or class) access to its non-public members by declaring it
as a friend within its definition
- Not a class member, but has access privileges as if it were

- friend functions are usually unnecessary if your class includes appropriate “getter” public functions

28CSE 374 AU 20 - KASEY CHAMPION

class Complex {

...

friend std::istream& operator>>(std::istream& in, Complex& a);

...

}; // class Complex std::istream& operator>>(std::istream& in, Complex& a)

{

...

}

Complex.h

Complex.cpp

Questions

29CSE 374 AU 20 - KASEY CHAMPION

RAII

▪ "Resource Acquisition is Initialization"

▪Design pattern at the core of C++

▪When you create an object, acquire resources
-Create = constructor

-Acquire = allocate (e.g. memory, files)

▪When the object is destroyed, release
resources
-Destroy = destructor

-Release = deallocate

▪When used correctly, makes code safer and
easier to read

30CSE 374 AU 20 - KASEY CHAMPION

char* return_msg_c() {

int size = strlen("hello") + 1;

char* str = malloc(size);

strncpy(str, "hello", size);

return str;

}

std::string return_msg_cpp() {

std::string str("hello");

return str;

}

using namespace std;

char* s1 = return_msg_c();

cout << s1 << endl;

string s2 = return_msg_cpp();

cout << s2 << endl;

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

Compiler Optimization

▪The compiler sometimes uses a “return by value optimization” or “move semantics”
to eliminate unnecessary copies
-Sometimes you might not see a constructor get invoked when you might expect it

31CSE 374 AU 20 - KASEY CHAMPION

Point foo() {

Point y; // default ctor

return y; // copy ctor? optimized?

}

Point x(1, 2); // two-ints-argument ctor

Point y = x; // copy ctor

Point z = foo(); // copy ctor? optimized?

Namespaces

▪Each namespace is a separate scope
- Useful for avoiding symbol collisions!

▪Namespace definition:
- namespace name {

// declarations go here
}

- Doesn’t end with a semi-colon and doesn’t add to the indentation of its contents
- Creates a new namespace name if it did not exist, otherwise adds to the existing namespace (!)

- This means that components (e.g. classes, functions) of a namespace can be defined in multiple source files

▪Namespaces vs classes
-They seems somewhat similar, but classes are not namespaces:
- There are no instances/objects of a namespace; a namespace is just a group of logically-related things (classes,

functions, etc.)
- To access a member of a namespace, you must use the fully qualified name (i.e. nsp_name::member)

- Unless you are using that namespace

- You only used the fully qualified name of a class member when you are defining it outside of the scope of the class definition

32CSE 374 AU 20 - KASEY CHAMPION

Const

▪C++ introduces the “const” keyword which declares a value that cannot change

▪const int CURRENT_YEAR = 2020;

33CSE 374 AU 20 - KASEY CHAMPION

