
Lecture 16: Trie Cont
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #16

Log onto pollev.com/cse374
Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia
Assignments

-HW4 turn in coming later today

2CSE 374 AU 20 - KASEY CHAMPION

Binary Trees

struct BinaryTreeNode

{

 int data;

 struct BinaryTreeNode* left;

 struct BinaryTreeNode* right;

}

struct BinaryTree

{

 struct BinaryTreeNode* root;

}

3

N-Ary Tree
struct TrinaryTreeNode
{
 char* data;
 struct TrinaryTreeNode* left;
 struct TrinaryTreeNode* middle;
 struct TrinaryTreeNode* right;
}
struct QuadTreeNode
{
 char* data;
 struct QuadTreeNode* children[4];
}

4

● Binary trees just one formal can
have any “branching number”

● Trinary tres have branching
number of three

● For arbitrarily large branching
numbers, arrays can make more
sense than lists of named pointers.

Prefix Tree (Trie)

 Tries are a character-by-character set-of-Strings implementation
 Nodes store parts of keys instead of keys

Compact data storage

Key of each node defined entirely by position

efficient worst case searching

strings often use 26-ary tree

- predictive text
- spell check

5Trying to Understand Tries.

https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014

HW5 - T9 Trie
Synopsis

In this assignment, you will build programs to implement T9
predictive text, a text input mode developed originally for
cell phones and still used for numeric keypads. Each
number from 2-9 on the keypad represents three or four
letters, the number 0 represents a space, and 1 represents
a set of symbols such as { , . ! ? } etc. The numbers from
2-9 represent letters as follows:

▪ 2 => ABC
▪ 3 => DEF
▪ 4 => GHI
▪ 5 => JKL
▪ 6 => MNO
▪ 7 => PQRS
▪ 8 => TUV
▪ 9 => WXYZ

Classic trie data structures have edges labeled with letters
to store prefixes of strings. But for this application, we use a
compressed trie that has only 10 possible branches at each
node instead of 26, since the digits 0-9 represent the 26
letters, space and symbols. Because of this, an extra layer
of complexity is needed to figure out the string represented
by a path.

6

 If a word with the same numeric sequence already exists in the trie, add the new word to
the trie as a link to a new node with an edge labeled '#' instead of one of the digits 2-9.
(The words linked from a node by the '#' edges essentially form a "linked list" of words that
have the same numeric code, but we use additional tree nodes to link the words together
instead of defining a separate kind of linked-list node just for this situation.)

Trie Struct
typedef struct TrieNode {
 char *word;
 struct TrieNode *children[NUM_CHILDREN];
} TrieNode;

typedef struct Trie {
 TrieNode *root;
} Trie;

7

TrieNode* makeNode() {
 TrieNode *t = (TrieNode*) malloc(sizeof(TrieNode));
 if (t == NULL) {
 return NULL;
 }
 for (int i = 0; i < NUM_NODES; i++) {
 t->next[i] = NULL;
 }
 t->word = NULL;
 return t;
}

Inserting word into T9 Trie
/*
Recursively follows or inserts nodes starting from previous_node until the location for word is found, at which
point it is inserted. Current_letter is the index of word where the recursive algorithm is currently at.
*/

int node_insert(TrieNode *previous_node, char word[], int current_letter) {
 if (word[current_letter] == '\0') { // word is empty
 // word is empty
 }
 int digit = letter_to_digit(word[current_letter]);

 if (previous_node->children[digit] == NULL) {
 // node doesn't exist, create it
 } else { // node already exists
 current_node = //next unexamined child of previous node
 }
 if (word[current_letter + 1] == '\0') { // at the end of the word
 if (current_node->word == NULL) { // current node doesn’t have a word yet

// save word here
 } else {
 // current node already has a word, add it as an additional completion
 }
 } else { // not at the end of the string, so continue to the next letter
 return node_insert(current_node, word, current_letter + 1);
 }
}

8

Memory Architecture
9

Thought experiment
▪public int sum1(int n, int m, int[][] table) {
▪ int output = 0;
▪ for (int i = 0; i < n; i++) {
▪ for (int j = 0; j < m; j++) {
▪ output += table[i][j];
▪ }
▪ }
▪ return output;
▪}

CSE 373 SP 18 - KASEY CHAMPION10

 public int sum2(int n, int m, int[][] table) {
 int output = 0;
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < m; j++) {
 output += table[j][i];
 }
 }
 return output;
 }

What do these two methods do?
What is the big-Θ
Θ(n*m)

Thought Experiment Graphed

CSE 373 SP 18 - KASEY CHAMPION11

Incorrect Assumptions

▪Accessing memory is a quick and constant-time operation

▪Sometimes accessing memory is cheaper and easier than at other times

▪Sometimes accessing memory is very slow

CSE 373 SP 18 - KASEY CHAMPION12

Lies!

Memory Architecture

CSE 373 SP 18 - KASEY CHAMPION13

CPU Register

L1 Cache

L2 Cache

RAM

Disk

What is it? Typical Size Time

The brain of the
computer!

32 bits ≈free

Extra memory to make
accessing it faster

128KB 0.5 ns

Extra memory to make
accessing it faster

2MB 7 ns

Working memory, what
your programs need

8GB 100 ns

Large, longtime storage 1 TB
8,000,000

ns

RAM (Random-Access Memory)

▪- RAM is where data gets stored for the programs you run.
Think of it as the main memory storage location for your
programs.

- RAM goes by a ton of different names: memory, main
memory, RAM are all names for this same thing.

CSE 373 SP 20- ZACH CHUN14

RAM can be represented as a huge array

15

=

This is a main
takeaway

If you’re interested in deeper than this : https://www.youtube.com/watch?v=fpnE6UAfbtU or take some EE classes?

RAM:
- addresses, storing stuff at specific locations
- random access

Arrays
- indices, storing stuff at specific locations
- random access

CSE 373 SP 20- ZACH CHUN

https://www.youtube.com/watch?v=fpnE6UAfbtU

Processor – Memory Gap

16CSE 374 AU 20 - KASEY CHAMPION

Problem: Processor-Memory Bottleneck

17CSE 374 AU 20 - KASEY CHAMPION

Problem: Processor-Memory Bottleneck

18CSE 374 AU 20 - KASEY CHAMPION

Example Memory Hierarchy

19CSE 374 AU 20 - KASEY CHAMPION

Example Memory Hierarchy

20CSE 374 AU 20 - KASEY CHAMPION

Example Memory Hierarchy

21CSE 374 AU 20 - KASEY CHAMPION

Review: Binary, Bits and Bytes
▪binary

▪A base-2 system of representing numbers using only 1s and 0s

▪- vs decimal, base 10, which has 9 symbols

▪bit

▪The smallest unit of computer memory represented as a single binary value either 0 or 1

CSE 373 SP 18 - KASEY CHAMPION22

Decimal Decimal Break Down Binary Binary Break Down

0 0

1 1

10 1010

12 1100

127 01111111

 byte
 The most commonly referred to unit of memory, a
grouping of 8 bits
 Can represent 265 different numbers (28)
 1 Kilobyte = 1 thousand bytes (kb)
 1 Megabyte = 1 million bytes (mb)
 1 Gigabyte = 1 billion bytes (gb)

Memory Architecture

Takeaways:

- the more memory a layer can store, the slower it is (generally)

 - accessing the disk is very slow

Computer Design Decisions

-Physics
-Speed of light

-Physical closeness to CPU

-Cost
-“good enough” to achieve speed

-Balance between speed and space

CSE 373 SP 18 - KASEY CHAMPION23

Appendix

24CSE 374 AU 20 - KASEY CHAMPION

