- .
-1«?« ‘;\'é:;) _~: A
¢ :Gﬂ- ’?‘:40;:*2..‘.
¢ U)"-\‘s‘:.k‘ ¢

g & X
i g B0

i - Minty 'g:?* : . 1,"
FEET e 3
Lecture Participation Poll #16
" ':":"'r,;

Log onto pollev.com/cse374
Or
Text CSE374 to 22333

CSE 374: Intermediate

I_e Ctu re 1 6 : Tri e CO nt Programming Concepts and

Tools

http://pollev.com/cse374

Administrivia

Assignments
HW4 turn in coming later today

Binary Trees

' Binary t
struct BinaryTreeNode g A

Root node
Level 1

12
{
int data; Level 2 Z///\\\N
struct BinaryTreeNode* left; \\\
struct BinaryTreeNode* right; K//\\N J/

Level3 11

| N /\
struct BinaryTree

Level 4 56 78

| d

struct BinaryTreeNode* root; Level 5 &

N-Ary ITree

struct TrinaryTreeNode

{

}

char* data;

struct TrinaryTreeNode* left;
struct TrinaryTreeNode* middle;
struct TrinaryTreeNode* right;

struct QuadTreeNode

{

char* data;
struct QuadTreeNode* children[4];

Binary trees just one formal can
have any “branching number”
Trinary tres have branching
number of three

For arbitrarily large branching
numbers, arrays can make more
sense than lists of named pointers.

Prefix Tree (Trie)

Tries are a character-by-character set-of-Strings implementation
Nodes store parts of keys instead of keys

Compact data storage
Key of each node defined entirely by position
efficient worst case searching

strings often use 26-ary tree

predictive text
spell check Trie

Trving to Understand Tries.

https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014

HWS5 - T9 Trie

Synopsis

In this assignment, you will build programs to implement T9
predictive text, a text input mode developed originally for
cell phones and still used for numeric keypads. Each
number from 2-9 on the keypad represents three or four
letters, the number O represents a space, and 1 represents
a set of symbols such as {, . ! ? } etc. The numbers from
2-9 represent letters as follows:

- 2=>ABC

= 3=>DEF

= 4 =>GHlI

= 5=>JKL

= 6 =>MNO
= 7=>PQRS
= 8=>TUV

= 9=>WXYZ

Classic trie data structures have edges labeled with letters
to store prefixes of strings. But for this application, we use a
compressed trie that has only 10 possible branches at each
node instead of 26, since the digits 0-9 represent the 26
letters, space and symbols. Because of this, an extra layer
of complexity is needed to figure out the string represented
by a path.

[jeIIo] [socks]

If a word with the same numeric sequence already exists in the trie, add the new word to
the trie as a link to a new node with an edge labeled '#' instead of one of the digits 2-9.
(The words linked from a node by the '# edges essentially form a "linked list" of words that
have the same numeric code, but we use additional tree nodes to link the words together
instead of defining a separate kind of linked-list node just for this situation.)

typedef struct TrieNode {

Trie Struct char Twords

struct TrieNode *children[NUM CHILDREN];
} TrieNode;

typedef struct Trie {
TrieNode *root;

} Trie;
TrieNode* makeNode () {
TrieNode *t = (TrieNode*) malloc(sizeof (TrieNode)) ;
1t (== NULL) {

return NULL;

}

for (int 1 = 0; 1 < NUM NODES; i++) {
t->next[1] = NULL;

}

t->word = NULL;

return t;

Inserting word into T9 Trie

/*
Recursively follows or inserts nodes starting from previous node until the location for word is found, at which
point it is inserted. Current letter is the index of word where the recursive algorithm is currently at.

*/

int node insert (TrieNode *previous node, char word[], int current letter) {
if (word[current letter] == '\0') { // word is empty
// word is empty

t
int digit = letter to digit (word[current letter]);

if (previous node->children[digit] == NULL) {
// node doesn't exist, create it
} else { // node already exists

current node = //next unexamined child of previous node
}
if (word[current letter + 1] == '\0') { // at the end of the word
if (current node->word == NULL) { // current node doesn’t have a word yet
// save word here
} else {

// current node already has a word, add it as an additional completion

}

} else { // not at the end of the string, so continue to the next letter
return node insert (current node, word, current letter + 1);

T S e
Sl TRl

Wiees 160 <+ we-‘h‘ e
SN

Memory Architecture

Thought experiment

*public int suml (int n, int m, int[][] table) { public int sum2(int n, int m, int[][] table) {
. int output = 0; int output = 0;

. for (int 1 = 0; 1 < n; +) |

. for (int § = 0; § < m; 34+4) { for (int 1 = 0; 1 < n; 1i++) {

. output += table[i][j]; for (int j = 0; j < m; j++)

. } output += table[J][1];

u } }

. return output;

}

return output;

What do these two methods do?
What is the big-©
O(n*m)

CSE 373 SP 18 - KASEY GHAMPION

Thought Experiment Graphed

Running sum1 vs sum2 on tables of size n x 4096

12500 = sumM]
- sumM2
10000

7500

5000

Time (in ms)

2500

0 P M
0 20000 40000 60000

Table height

CSE 373 SP 18 - KASEY GHAMPION

Incorrect Assumptions

=Accessing memory is a quick and constant-time operati

=Sometimes accessing memory is cheaper and easier than at other times

=Sometimes accessing memory is very slow

CSE 373 SP 18 - KASEY GHAMPION

Memory Architecture

The brain of the : _
CPU Register computer! 32 bits ~free
Extra memory to make
L1 Cache accessing it faster 128KB 0.5 ns
Extra memory to make
L2 Cache accessing it faster 2MB 7ns
Working memory, what 8CB 100 ns
RAM your programs need
Large, longtime storage 1TB 8,000,000
Disk ns

CSE 373 SP 18 -

KASEY GEHHAMPION

RAM (Random-Access Memory)

- RAM is where data gets stored for the programs you run.
Think of it as the main memory storage location for your
programs.

- RAM goes by a ton of different names: memory, main
memory, RAM are all names for this same thing.

26B PC25300U555 Swissbit®
MEU25664D6BC2EP-30R

601682 / 20037725
4500010489 Made in Germany mem

CARRRNNARRARRRRRRRRARRARRANNA

Process Name

ey

(&G

&

Memory v Compressed M... Threads F
kernel_task 1.19GB 0 bytes 144
IntelliJ IDEA 1,018.0 MB 194.7 MB 56
Microsoft PowerPoint 545.1 MB 238.9 MB 18
WindowServer 330.7 MB 170.9 MB 8
nsurlsessiond 320.8 MB 239.4 MB 3
Mattermost Helper 315.4 MB 32.0 MB 19
Google Chrome 291.7 MB 17.5 MB 31
Google Chrome Helper (Rend... 243.4 MB 91.5 MB 14
zoom.us 239.7 MB 61.8 MB 20
Google Chrome Helper (Rend... 236.6 MB 26.7 MB 14
Google Chrome Helper (GPU) 235.2 MB 19.7 MB 10
Google Chrome Helper (Rend... 203.4 MB 27.9 MB 16
Sublime Text 186.5 MB 170.9 MB 12
spindump 158.4 MB 80.0 MB 3
SystemUIServer 148.5 MB 24.9 MB 4
Finder 139.9 MB 56.3 MB 4
java 128.2 MB 61.3 MB 24
java 126.3 MB 110.3 MB 23
java 124.4 MB 27.8 MB 28
mds_stores 115.5 MB 36.2 MB 4
Mattermost 112.3 MB 37.5 MB 44
Cold Turkey Blocker 109.1 MB 49.2 MB 9
Google Chrome Helper (Rend... 102.8 MB 33.0 MB 16
Mail 91.4 MB 25.6 MB 7
Google Chrome Helper (Rend... 90.1 MB 62.4 MB 13
Google Chrome Helper (Rend... 88.1 MB 54.8 MB 13
Mattermost Helper 82.5 MB 44.8 MB 5
Google Chrome Helper (Rend... 77.4 MB 32.5 MB 13
_Gooale Chrome Helner (Rend. 72.7 MB 51.4 MB 13
MEMORY PRESSURE Physical Memory: 16.00 GB
Memory Used: 9.81GB
Cached Files: 1.94 GB
Swap Used: 628.0 MB

CSE 373 SP 20- ZACH CHUN

RAM can be represented as a huge array

RAM: . B . Arrays This is a main
- addresses, storing stuff at specific locations - indices, storing stuff at specifi takeaway

- random access - random access

B 20BPC24%00US5 Swissbit®
VELSSSIDOERIR . iy

) 601682/ 20037725
4500010489 Made in Germany

AN,

lill“ilIIII!lll.l.lI!!I!llllIllIlIl!IIIIIIIIIIIIIIIlIIIllIlIlIIlI o

If you're interested in deeper than this : https://www.youtube.com/watch?v=fpnE6UAfbtU or take some EE classes?

CSE 373 SP 20- ZACH CHUN

https://www.youtube.com/watch?v=fpnE6UAfbtU

Processor - Memory Gap

100,000
“Moore’s Law”
1 0,000 R e O T o e B T ¥ ilp'r'é'c’ """""""""""""""""""""
2 55%/year
g 000 o 5 175 4 5 e 0] [, e R e
E Processor, Processor-Memory
5 100 re=resmmmim et e R “Performance Gap
1o | _(grows 50%/year)
Memory J
1 —8_ - T T T T T
1980 1985 1990 1995 2000 2005 2010
Year DRAM
1989 first Intel CPU with cache on chip 7%/year
1998 Pentium Il has two cache levels on chip ~2X/10yrs)

Problem: Processor-Memory Bottleneck

Processor performance
doubled about

every 18 months Bus latency / bandwidth
evolved much slower Main
CPU | Reg

| \ I Memory

Core 2 Duo: T o

Can process at least Core 2 Duo: * OME DAY SALE ,g0 £
b Ty SIS ¥

256 Bytes/cycle Bandwidth Lo -

— 2 Bytes/cycle
Latency
100-200 cycles (30-60ns

Problem: lots of waiting on memory
cycle: single machine step (fixed-time)

Problem: Processor-Memory Bottleneck

Processor performance

doubled about

every 18 months

CPU | Reg

Core 2 Duo:

Can process at least

256 Bytes/cycle

L —

| Cache

Bus latency / bandwidth
evolved much slower

T

Core 2 Duo:

Bandwidth

2 Bytes/cycle

Latency

100-200 cycles (30-60ns

Solution: caches

cycle: single machine step (fixed-time)

— - ” A
ONE DAY SALE " e
-~ 3

-

Example Memory Hierarchy

<1lns
registers

on-chip L1

1
Smaller, e cache (SRAM)

faster,
costlier — off-chip L2
per byte cache (SRAM)
Larger, 100 ns main memory
slower, (DRAM)
cheaper
per byte Lo local secondary storage 31 days
10'023'0(30 y . S 66 months = 5.5 years
ms | =
1-150 ms remote secondary storage

(distributed file systems, web servers)

~

1-15years

28

Example Memory Hierarchy

registers CPU registers hold words retrieved from L1 cache

on-chip L1

Smaller, , :

cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
faster,
costlier off-chip L2
per byte cache (SRAM) L2 cache holds cache lines retrieved

from main memory
Larger, main memory
slower, (DRAM) Main memory holds disk blocks
retrieved from local disks

cheaper -
per byte local secondary storage Local disks hold files

(local disks)

retrieved from disks on
remote network servers

remote secondary storage
(distributed file systems, web servers)

Example Memory Hierarchy

4» explicitly program-controlled
registers e.g. refer to exactly %rax, %rbx)

on-chip L1

e cache (SRAM) program sees “memory”;
costlier off-chip L2 hardware manages caching
per byte cache (SRAM) transparently
Larger, main memory

slower, (DRAM)

cheaper

per byte local secondary storage 31

(local disks)

remote secondary storage
(distributed file systems, web servers)

CSE 374 AU 20 - KASEY CHAMPION 21

Review: Binary, Bits and Bytes

byte
sbinary Y .
_ . The most commonly referred to unit of memory, a
A base—? system of repre?c,entlng numbers using only 1s and Os grouping of 8 bits
=~ vs decimal, base 10, which has 9 symbols Can represent 265 different numbers (28)
=bit 1 Kilobyte = 1thousand bytes (kb)
=The smallest unit of computer memory represented as a single binary value either O or 1 1 Megabyte = 1 million bytes (mb)

1 Gigabyte = 1 billion bytes (gb)

Decimal Break Down Binary Break Down
O @)

1 1
10 1010
12 1100
127 o1Mnn

CSE 373 SP 18 - KASEY CHAMPION

Memory Architecture

Takeaways:
- the more memory a layer can store, the slower it is (generally)

- accessing the disk is very slow

Computer Design Decisions

-Physics
Speed of light
Physical closeness to CPU

-Cost
“good enough” to achieve speed
Balance between speed and space

CSE 373 SP 18 - KASEY CHAMPION

Appendix

CSE 374 AU 20 - KASEY CHAMPION 24

