Lecture Participation Poll #13
g Log onto pollev.com/cse374 :
R Or b
Text CSE374 to 22333 R

e

LeCture 13 MU|t|f||e CSE 374: Intermediate

Programming Concepts and

Management | o

http://pollev.com/cse374

Administrivia

Assignments

HW2 Live - Soft Deadline Thursday October 29t at 9pm PST
Autograder updated
HW3 coming later today — last assignment before midpoint deadline
Reminder: Midpoint Deadline Friday November 6t at 9pm PST
Review Assignment Live — Due Wednesday
24 hrs late 20% penalty
48 hrs late 50% penalty
Not accepted more than 48hrs late
Student survey: Week student survey

https://forms.gle/HQUFoW76YA1YU1Sy8

Linked Lists

List-> | 7| Data | Next-> Data | Next-> | Data | NULL
#include <stdlib.h> int main () {
#include <stdio.h> Node *nl = make node (4, NULL);
Node *n2 = make node (7, nl);
typedef struct Node { Node *n3 = make node (3, n2);
int value;
struct Node *next; printf (
} Node; "$d%dsd\n",
n3->value,
Node *make node (int value, Node *next) ({ n3->next->value,
Node *node = (Node*)malloc (sizeof (Node)) n3->next->next->value
node->value = value;)
node->next = next;
return node; free (n3);
} free(n2);
free(nl);
}

Multi-File C Programming

=You can split C into multiple files!
What if we wanted to use Linked List code in a different project?
If the linked list code is long, it can make files unwieldy
What if we want to separate our "main” from the struct definitions

=Pass all “.c” files into gcc:
gcc -o try lists 1ll.c main.c

Must include code header files to enable one file to see the other, otherwise you have
linking errors

$ gcc -g -Wall -o try lists 1ll.c main.c
main.c: In function ‘main’:
main.c:5:5: error: unknown type name ‘Node’
5 | Node *nl = make node(4, NULL);
| A
main.c:5:16: warning: implicit declaration of function ‘make node’ [-Wimplicit-function-declaration]
5 | Node *nl = make node(4, NULL);

I o o P o P Pt ot P

Sharing code across files

=Must always declare a function or struct in every

file it's used in
Thank goodness C lets us separate declarations and
definitions ;)
Include function header as definition

Node *make node (int value, Node *next);

#include <stdlib.h>
#include <stdio.h>

typedef struct Node
int value;

} Node;

Include struct type definition
typedef struct Node

#include <stdlib.

{ typedef struct No
int value;
int value; struct Node *
struct Node *next; } Node;
} Node; Node *make node (i

Node *make node (1
Node *node =
node->value =
node->next =
return node;

{

struct Node *next;

Node *make node (int value, Node *next);

int main() {
Node *nl = make node (4, NULL);
Node *n2 = make node (7, nl);
h> Node *n3 = make node (3, n2);
de { // rest of main..
} main.c
next;

nt value, Node *next);

nt value, Node *next) {
(Node*)malloc (sizeof (Node)) ;
value;

next;

ll.c

Header Files

=Copying your function declarations to every file you
want to use them is not fun

If you forget to make a change to all of them, confusing
errors occur!

=A header file (.h) is a file which contains just
declarations

s#include inserts the contents of a header file into
your .c file

]E|Ut declarations in a header, then include it in all other
iles

Two types of #include
#include <stdio.h>

Used to include external libraries. Does not look for other files that
you created.

#include "myfile.h"

Used to include your own headers. Searches in the same folder as the
rest of your code.

typedef struct Node {
int value;
struct Node *next;
} Node;

Node *make node (int value, Node *next); 11

.h

#include <stdlib.h>
#include <stdio.h>

#include "11.h"

Node *make node (int value, Node *next) {
Node *node = (Node*)malloc (sizeof (Node))

node->value = value;
node->next = next;
return node;
} 11.

#include "11.h"

int main () {
Node *nl make node (4, NULL);
Node *n2 = make node (7, nl);
Node *n3 = make node (3, n2);

// rest of main..
} main.

#ifndef
#define

LL_H
LL_H

Header Guards

=Consider the following header structure:
Header A includes header B.
Header C includes header B.
A source code file includes headers A and C.

typedef struct Node {
int value;
struct Node *next;
} Node;

Node *make node (int value, Node *next);

The code now includes two copies of header BIf | fendif 11l.h
Solution: "header guard” $include <stdlib.h>
Uses ifndef to check if header is already defined for thisfile | #inc1ude <stdio.h>
#include "11.h" #include "11.h"
int main () { Node *make node (int value, Node *next)
Node *nl = make node (4, NULL); Node *node =
Node *n2 = make node (7, nl); (Node*)malloc (sizeof (Node)) ;
Node *n3 = make node (3, n2); node->value = value;
B node->next = next;
// rest of main.. return node;
} main.c J ll.c

Libraries & Object Files in C

sRemember #include <stdio.h>?

s Tells our .c file what function declarations arein stdio.h
but what about the function definitions? (i.e. the code)
We don't have access to stdio.c

=|Instead, we have a pre-compiled library that contains the function definitions
The stdio library is included by default with gcc

=In C, these "libraries" are called object files
Object files contain the machine code for the functions within
When compiled, a function is turned into "machine code" which the physical CPU electronics can understand

Linking In C

=Every time you have compiled something with gcc, you have actually been doing two things:
Compiling: Translating C code (a single .c file) into machine code stored in object files

Linking: Combining many object files into one executable

"Why separate these two?

Compile each object once and re-use it for multiple executables

Building multiple programs which use some of the same source code doesn't require recompilation

incremental compilation: Huge projects can take hours or days to compile from scratch! We can save time by
only re-compiling what has changed.

Slow-to-compile files which you don't change often don't have to be re-compiled

foo.c

Programmer
code —
source file

foo.o

Compiled
machine code
— object file

(executable)

Dependency Tree: linked list project

try lists Executable

--

Example

Consider this dependency graph.

What files (source and object) are
required when building -

program two?

A. b, e

B. beg

C. ab,.ce,f

D. befgh
E. b,d,e/flglh

file g.h

file h.h

Make Files

=Make is a program which automates building dependency trees
List of rules written in a Makefile declares the commands which build each intermediate part
Helps you avoid manually typing gcc commands, easier and less prone to typos
Automates build process

= Makefiles are a list of with Make rules which include: tab not spaces!

Target - An output file to be generated, dependent on one or more sources
Source — Input source code to be built
Recipe - command to generate target

=Makefile logic

target:

source

recipe

11.

O

gcc

1ll1.c 11.h

-c 11l.c

Make builds based on structural organization of how code depends on other code as defined by includes
Recursive — if a source is also a target for other sources, must also evaluate its dependencies and remake as required

Make can check when you've last edited each file, and only build what is needed!
Files have "last modification date". make can check whether the sources are more recent than the target
Make isn't language specific: recipe can be any valid shell command

=run make command from within same folder
Smake [-f makefile] [options] .. [targets] ../
Starts with first rule in file then follows dependency tree
-f specifies makefile name, if non provided will default to “Makefile”
if no target is specified will default to first listed in file

https://www.gnu.org/software/make/manual/make.html#lntroduction

https://www.gnu.org/software/make/manual/make.html#Introduction

More Make Tools

=make variables help reduce repetitive typing and
make alterations easier

can change variables from command line
enables us to reuse Makefiles on new projects
can use conditionals to choose variable settings

=ifdef checks if a given variable is defined for
conditional execution

ifndef checks if a given variable is NOT defined

=Special characters:
$@ for target
$/ for all sources
$< for left-most source
\ enables multiline recipies
* functions as wildcard (use carefully)

% enables implicit rule definition by using % as a make
specific wildcard

http://cslibrary.stanford.edu/107/UnixProgrammingTools.pdf

CC = gcc
CGLAGS = -Wall

foo.o: foo.c foo.h bar.h
S(CC) S (CFLAGS) —-c foo.c -o foo.o

make CFLAGS=-g

EXE=

ifdef WINDIR #defined on Windows
EXE=.exe

endif

widget$ (EXE) : foo.o bar.o
$(CC) S (CFLAGS) -o widget$ (EXE)\
foo.o bar.o

OBJFILES = foo.o bar.o baz.o
widget: $(OBJFILES)
gcc —-o widget $(OBJFILES)

$.0: %.C
$(CC) —-c S(CFLAGS) S< -o s@
clean:

rm *.o widget Makefile

http://cslibrary.stanford.edu/107/UnixProgrammingTools.pdf

Phony Targets

=A target that doesn't create the listed output

=A way to force run commands regardless of

dependency tree

=Common uses:

all — used to list all top notes across multiple
dependency trees

clean — cleans up files after usage
test — specifies test functionality
printing messages or info

all: try lists test suite
clean:

rm objectfiles
test: test suite

./test suite

CC = gcc
CGLAGS = -Wall
all: my program your program

my program: foo.o bar.o
$(CC) $(CFLAGS)

your program: bar.o baz.o
$ (CC) $ (CFLAGS)
#not shown: foo.o, bar.o,
clean:
rm *.0 my program your program

-0 my program foo.o bar.o

—0 your program foo.o baz.o

baz.o targets

Makefile

Example Makefile

variable definitions

try_lists

must include rules

) for each file

main.o l.0
rules define
dependency
hierarchy
main.c Il.h ll.c

CC = gcc

CGLAGS = -g —-Wall —-std=cll

try lists: main.o 1l.0

$(CC) S (CFLAGS) -o try lists main.o 1ll.o

main.o: main.c 11.h

S(CC) S (CFLAGS) —-c main.c

11.0: 11.c 11.h

$(CC) $(CFILES) -c 1ll.c

Makefile

#ifndef SHOUT H
#define SHOUT H

Example

/* Write message m in uppercase to stdout */
void shout (char m[]);
#endif /* ifndef SHOUT H */

shout.h

#ifndef SPEAK H

#define SPEAK H

/* Write message m to stdout */
void speak (char m[]);

#endif /* ifndef SPEAK H */ speak,h

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include "speak.h"

#include "shout.h"

/* Write message m in uppercase to stdout */

#include "speak.h"
#include "shout.h"
/* Say HELLO and goodbye */

int main(int argc, char* argv|[])

{
shout ("hello") ;

#include <stdio.h>

#include "speak.h"

/* Write message m to stdout */
void speak (char m[])

{

printf ("%$s\n", m);

void shout (char m[]) speak ("goodbye™) ;) speak.c
{ return 0;
int len; /* message length */ } main.c
char *mcopy; /* copy of original message */
int i;
len = strlen(m);
11: talk
mcopy = (char *)malloc(len*sizeof (char)+1); i The ercutable
zzicsz(Tcgyy;ml;len- 1) talk: main.o speak.o shout.o
mcopy[ii - touppér(mcopy[i])' gcc -Wall -std=cll -g -o talk main.o speak.o shout.o
} speak (mcopy) ; free (mcopy) ; # Individual source files
shout.c speak.o: speak.c speak.h
gcc -Wall -std=cll -g -c speak.c
talk shout.o: shout.c shout.h speak.h
gcc -Wall -std=cll -g -c shout.c
main.o: main.c speak.h shout.h
gcc -Wall -std=cll -g -c main.c
shout.o main.o speak.o , _
A "phony" target to remove built files and backups
clean: rm -f *.o talk *~ Makefile
shout.c shout.h main.c speak.h speak.c

Appendix

CSE 374 AU 20 - KASEY CHAMPION 17

Extra Characters

> In commands (short list): Also use wild cards (ex. *.0), but

o $@ for target you need to be careful.

o $A for all sources

o $<for left-most source Use the ‘wildcard’ function for
> Examples: precision.

o widget$(EXE): foo.o bar.o v (wildcard *.o)

$(CC) $(CFLAGS) -0
S@ $M

https://www.gnu.org/software/make/manual/ntml node/Wildca

o fo0o0.0: foo.cfoo.h bar.h rd-Function.html#Wildcard-Function
$(CC) $(CFLAGS) -c $<

Fancy Stuff (use with care!)

Implicit rules:

Make automatically applies rules to common types of files
n.o is made automatically from n.c with a recipe of
the form ‘$(CC) $(CPPFLAGS) $(CFLAGS) -c’.

Pattern rules:
Define new implicit rules by using ‘%’ as a type of wildcard

$.0 : %.C
S(CC) -c $(CFLAGS) $ (CPPFLAGS) $< -o S@

3.class: %.java
javac $< # Note we need $< here

Commands can be any
valid shell command,
including shell scripts

Repeating targets can
add dependencies
(useful for automatic
target generation)

Suffix rules:
Old form of pattern
rules using only suffixes

Problem of multiple ‘main’ functions

//sample.c
#ifdef WIN32
int main() {
//in this case only this main()
will be compiled.

}
#endif

#ifdef LINUX
int main() {
//another main for linux platform

}
#endif

sample Makefile
ifdef WINDIR # defined on Windows
CFLAGS += -D WIN32

endif

You would not use two ‘main’ functions,
because main is always the single entry point.

(Note: It works in Java because we can define
one ‘main’ for each class namespace. We don’t
have the same concept of namespaces in C.)

Your code could define two mains, and choose
one at pre-process time.

You could also include code that was chosen
with a compiler flag (such as #i fdef DEBUG).

