
Lecture 15: Debugging in C
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #15

Log onto pollev.com/cse374

Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia

-Klaatu is down again? -_-

-HW2 & HW3 due tomorrow, lock on Sunday

-HW4 will be posted later today

-Midterm on Friday

2 CSE 374 AU 20 - KASEY CHAMPION

What is a Bug?

▪A bug is a difference between the design of a
program and its implementation
-Definition based on Ko & Meyers (2004)

▪We expected something different from what is
happening

-“it’s not a bug it’s a feature” - Microsoft

▪Examples of bugs
-Expected factorial(5) to be 120, but it returned 0

-Expected program to finish successfully, but
crashed and printed "segmentation fault"

-Expected normal output to be printed, but instead
printed strange symbols

3 CSE 374 AU 21 - KASEY CHAMPION

http://faculty.washington.edu/ajko/papers/Ko2004SoftwareErrorsFramework.pdf

Debugging techniques

▪Comment out (or delete) code
-tests to determine whether removed code was source of problem
-Test one function at a time

▪Add print statements
-Check if certain code is reachable
-check current state of variables

▪Use a debugger
- lets you control program execution line by line
- lets you see current state of variables
- In C: gdb

▪Write tests
-unit tests = test of input and output of singular code modules

- often many tests to one function

▪Type errors/warnings into Google
-gcc -Wall -Werror will show you more compiler output

4 CSE 374 AU 21 - KASEY CHAMPION

Debugging Basics

Debugging strategies look like:

1.Describe a difference between expected and actual behavior

2.Hypothesize possible causes

3.Investigate possible causes (if not found, go to step 2)

4.Fix the code which was causing the bug

5.Vast majority of the time spent in steps 2 & 3

5 CSE 374 AU 20 - KASEY CHAMPION

Hypothesize

Now, let's look at the code for factorial()

Select all the places where the error could be coming from

▪The if statement's "then" branch

▪The if statement's "else" branch

▪Somewhere else

6 CSE 374 AU 20 - KASEY CHAMPION

int factorial(int x) {

 if (x == 0) {

 return x;

 } else {

 return x * factorial(x-1);

 }

}

Investigate

Let's investigate the base case and recursive case
-Base case is the "if then" branch

-Recursive case is the "else" branch

7 CSE 374 AU 20 - KASEY CHAMPION

Case Input Math Equivalent Expected Actual

Base factorial(0) 0! = 1 1 ???

Recursive factorial(1) 1! = 1 1 ???

Recursive factorial(2) 2! = 1 * 2 2 ???

Recursive factorial(3) 3! = 1 * 2 * 3 6 ???

int factorial(int x) {

 if (x == 0) {

 return x;

 } else {

 return x * factorial(x-1);

 }

}

Investigate

▪One way to investigate is to write code to
test different inputs

▪ If we do this, we find that the base case has
a problem

8 CSE 374 AU 20 - KASEY CHAMPION

Case Input Math Equivalent Expected Actual

Base factorial(0) 0! = 1 1 0

Recursive factorial(1) 1! = 1 1 0

Recursive factorial(2) 2! = 1 * 2 2 0

Recursive factorial(3) 3! = 1 * 2 * 3 6 0

int factorial(int x) {

 if (x == 0) {

 return x;

 } else {

 return x * factorial(x-1);

 }

}

Fix

9 CSE 374 AU 20 - KASEY CHAMPION

int factorial(int x) {

 if (x == 0) {

 return x;

 } else {

 return x * factorial(x-1);

 }

}

int factorial(int x) {

 if (x == 0) {

 return 1;

 } else {

 return x * factorial(x-1);

 }

}

Case Input Math Equivalent Expected Actual

Base factorial(0) 0! = 1 1 1

Recursive factorial(1) 1! = 1 1 1

Recursive factorial(2) 2! = 1 * 2 2 2

Recursive factorial(3) 3! = 1 * 2 * 3 6 6

Common C Bugs

▪ forget to free -> program uses more memory than needed
▪ memory leak -> lose pointer to start of dynamically allocated memory, can’t free
▪ keep using after free -> later calls to malloc may reuse freed memory
▪ double free -> can corrupt internal data structures of malloc
▪ dangling pointer -> lose memory that pointer referenced, dereferencing dangling

pointer, undefined behavior

Segmentation Fault

- attempt to access memory that “does not belong to you”
- indicates memory corruption
- Can be caused by:

- array index out of bounds
- accessing freed memory
- dereferencing null pointer
- changing String(char*) literal

10 https://en.wikipedia.org/wiki/Segmentation_fault

https://en.wikipedia.org/wiki/Segmentation_fault

C Debugger

▪A debugger is a tool that lets you stop running programs, inspect values etc…
- instead of relying on changing code (commenting out, printf) interactively examine variable values, pause and

progress set-by-step

-don’t expect the debugger to do the work, use it as a tool to test theories

-Most modern IDEs have built in debugging functionality

▪ ‘gdb’ -> gnu debugger, standard part of linux development, supports many languages
-techniques are the same as in most debugging tools

-can examine a running file

-can also examine core files of previous crashed programs

▪Want to know which line we crashed at (backtrace)

▪ Inspect variables during run time

▪Want to know which functions were called to get to this point (backtrace)

11 CSE 374 AU 21 - KASEY CHAMPION

Meet gdb

▪Compile code with ‘-g’ flag
-gcc -g program.c
-saves human readable info

▪Open program with gdb <executable file>

-gdb a.out

▪ start or restart the program: run <program args>
- quit the program: kill

- quit gdb: quit

▪Reference information: help
-Most commands have short abbreviations

- bt = backtrace

- n = next

- s = step

- q = quit

-<return> often repeats the last command

12 CSE 374 AU 21 - KASEY CHAMPION [Video] gdb debugger demo

https://www.youtube.com/watch?v=bWH-nL7v5F4

13 CSE 374 AU 20 - KASEY CHAMPION https://courses.cs.washington.edu/courses/cse374/19sp/refcard.pdf

https://courses.cs.washington.edu/courses/cse374/19sp/refcard.pdf

Useful GDB Commands

▪bt – stack backtrace

▪up, down – change current stack frame

▪list – display source code (list n, list <function
name>)

▪print <expression> – evaluate and print
expression

▪display <expression>
-re-evaluate and print expression every time execution

pauses
-undisplay – remove an expression from the recurring list

▪info locals – print all locals (but not
parameters)

▪x (examine) – look at blocks of memory in
various formats

14 CSE 374 AU 20 - KASEY CHAMPION

If we get a segmentation fault:
1. gdb ./myprogram

2. Type "run" into GDB

3. When you get a segfault, type "backtrace"
or "bt"

4. Look at the line numbers from the
backtrace, starting from the top

Breakpoints

temporarily stop program running
at given points

- look at values in variables

-test conditions

-break function (or line-number)

-conditional breakpoints
- to skip a bunch of iterations

- to do assertion checking

15 CSE 374 AU 20 - KASEY CHAMPION

▪break – sets breakpoint
- break <function name> | <line number> | <file>:<line number>

▪info break – print table of currently set
breakpoints

▪clear – remove breakpoints

▪disable/enable temporarily turn breakpoints
off/on

▪continue – resume execution to next breakpoint
or end of program

▪step - execute next source line

▪next – execute next source line, but treat function
calls as a single statement and don’t “step in”

▪finish – execute to the conclusion of the current
function
- how to recover if you meant “next” instead of “step”

Valgrind

▪Valgrind is a tool that simulates your program to find memory errors
-catches pointer errors during execution

-prints summary of heap usage, including details of memory leaks

gcc -g -o myprogram myprogram.c

valgrind --leak-check=full myprogram arg1 ag

16 CSE 374 AU 21 - KASEY CHAMPION

▪Can show:
-Use of uninitialized memory

-Reading/writing memory after it has been free'd

-Reading/writing off the end of malloc'd blocks

-Reading/writing inappropriate areas on the stack

-Memory leaks -- where pointers to malloc'd blocks are
lost forever

-Mismatched use of malloc/new/new [] vs
free/delete/delete []

-Overlapping src and dst pointers in memcpy() and
related functions

[Video] Valgrind Demo

https://www.youtube.com/watch?v=bb1bTJtgXrI

Valgrind Example

17 CSE 374 AU 21 - KASEY CHAMPION

example1.c

terminal

Attempt to write 4 bytes to an invalid location in
memory (sizeof(int))
a[10] -> index out of bounds

Valgrind EX2

18 CSE 374 AU 21 - KASEY CHAMPION

example2.c

terminal

attempting to print a[10] which is not an initialized
value (array index out of bounds)

Testing

Computers don’t make mistakes- people do!

“I’m almost done, I just need to make sure it works”
– Naive 14Xers

▪Software Test: a separate piece of code that exercises the code you are assessing by providing
input to your code and finishes with an assertion of what the result should be.

1. Isolate

2. Break your code into small modules

3. Build in increments

4. Make a plan from simplest to most complex cases

5. Test as you go

6. As your code grows, so should your tests

CSE 373 SP 18 - KASEY CHAMPION 19

Types of Tests

▪Black Box
-Behavior only – ADT requirements

-From an outside point of view

-Does your code uphold its contracts with its users?

-Performance/efficiency

▪White Box
- Includes an understanding of the implementation

-Written by the author as they develop their code

-Break apart requirements into smaller steps

- “unit tests” break implementation into single assertions

CSE 373 SP 18 - KASEY CHAMPION 20

What to test?

Expected behavior
-The main use case scenario

-Does your code do what it should given friendly conditions?

Forbidden Input
-What are all the ways the user can mess up?

Empty/Null
-Protect yourself!

-How do things get started?

Boundary/Edge Cases
-First

- last

Scale
- Is there a difference between 10, 100, 1000, 10000 items?

CSE 373 SP 18 - KASEY CHAMPION 21

Tips for testing

▪You cannot test every possible input, parameter value, etc.
-Think of a limited set of tests likely to expose bugs.

▪Think about boundary cases
-Positive; zero; negative numbers

-Right at the edge of an array or collection's size

▪Think about empty cases and error cases
-0, -1, null; an empty list or array

▪ test behavior in combination
-Maybe add usually works, but fails after you call remove

-Make multiple calls; maybe size fails the second time only

Midterm Review

23

Linux File Permissions

Permission Groups

▪ u – Owner
▪ g – Group
▪ o – Others
▪ a – All users

Permission Types
● r- read – a user’s ability to read the contents of the

file.
● w - write – a user’s capability to write or modify a file

or directory.
● x - execute – a user’s capability to execute a file or

view the contents of a directory.

reading ls -l

▪ _rw_rw_rw = owner, group and all users have read &

write permissions

▪ first character is either a - or a d : d means “directory”, “-

” means file

chmod <group>+||-<permission> <file>

▪ chmod a-rw file1 : remove read and write

permissions on file1 for all users

▪ chmod a+rw file1 : add read and write permissions

on file1 for all users

24 https://www.linux.com/training-tutorials/understanding-linux-file-permissions/

Shell Variables

▪Shell variables = string substitution
- Declare variables in the shell to easily refer to a given string
- All variables are strings

▪Declare variables in the terminal with a name and a string value
-<var name>=“<var string>”
- EX: myvar=“myvalue”

- Note: no white space allowed on either side of the “=“

▪Refer to your variable using the “$” symbol before the var name
-$<var name>
- EX: echo $myvar

- myvalue

▪Alias
- Rename a bash command, create your own shortcut
-alias <string>=“substitution string”

- EX: alias cheer=“echo hip hip horray!”

- Only exists within the currents state of your shell
- Can store alias in bashrc file to preserve alias across all shells

25 CSE 374 AU 20 - KASEY CHAMPION

Bash Script Variables

▪When writing scripts you can use the following default variables

$# - stores number of parameters entered

Ex: if [$# -lt 1] tests if script was passed less than 1 argument

$N - returns Nth argument passed to script

Ex: sort $1 passes first string passed into script into sort command

$0 – command name

Ex: echo “$0 needs 1 argument” prints “<name of script> needs 1 argument”

$* returns all arguments

$@ returns a space separated string containing all arguments
”$@” prevents args originally quoted from being read as multiple args

26 CSE 374 AU 20 - KASEY CHAMPION

grep

▪Search for a given string within a given file
-grep [options] pattern [files]

-EX: grep “computer” /usr/share/dict/words

▪Helpful Options
--c : prints count of lines with given pattern

--h : display matched lines (without filenames)

--i : ignore case when matching

--l : display list of filenames with matches

27 CSE 374 AU 20 - KASEY CHAMPION https://www.geeksforgeeks.org/grep-command-in-unixlinux/

https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/grep-command-in-unixlinux/

Redirecting Streams

Redirection Syntax:
-< yourInput
-> yourOutput
->> appendYourOutput
-2> yourError
-&> yourOutputAndError
-Stdout & stderr default to terminal

Examples

-cmd > file sends stdout to file
-cmd 2> file sends stderr to file
-cmd 1> output.txt 2> error.txt redirects both stdout and stderr to files
-cmd < file accepts input from file

- Instead of directly putting arg in command, pass args in from given file

-cat file1.txt file2.txt file3.txt or cat < fileList.txt

28 CSE 374 AU 20 - KASEY CHAMPION https://www.gnu.org/software/bash/manual/html_node/Redirections.html

https://www.gnu.org/software/bash/manual/html_node/Redirections.html

I/O Piping

We can feed the stdout of one process to the stdin of
another using a pipe (“|”)

-Data flows from process to the other through multiple
transformations seamlessly

-Similar to redirection, but specifically passes streams into other
programs instead of their defaults

Example:
- Instead of:

- du –h –d 1 . > sizes.txt

- grep ‘M’ sizes.txt

-We can use piping
- du – h –d 1 . | grep ‘M’

▪Piping is effective when you have one set of data
that needs to be transformed multiple times
-Cmd1 | cmd2 – pipe output of cmd1 into input of cmd2

29 CSE 374 AU 20 - KASEY CHAMPION Video: The Magic of Piping

https://youtu.be/tc4ROCJYbm0?t=340

If Statements

if [test]; then

 commands

fi

if [-f .bash_profile]; then

 echo “You have a .bash_profile.”
else

 echo “You do not have a .bash_profile”
fi

30

if [$# -ne 2]

then

 echo "$0: takes 2 arguments" 1>&2

 exit 1

fi

https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php

https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php

Loops

while [test]

do

 commands

done

31

for variable in words; do

 commands

done

counter=1

while [$counter -le 10]

do

 echo $counter

 ((counter++))

done

while [$# -gt 0]

do

 echo $*

 shift

done

https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php

for value in {1..5}

do

 echo $value

done

https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php

Regex special characters

\ - escape following character

. – matches any single character at least once

• c.t matches {cat, cut, cota}

| - or, enables multiple patterns to match against

• a|b matches {a} or {b}

* - matches 0 or more of the previous pattern (greedy match)

• a* matches {, a, aa, aaa, …}

? – matches 0 or 1 of the previous pattern

• a? matches {, a}

+ - matches one or more of previous pattern

• a+ matches {a, aa, aaa, …}

{n} – matches exactly n repetitions of the preceding

• a{3} matches {aaa}

() – groups patterns for order of operations

[] – contains literals to be matched, single or range

• [a-b] matches all lowercase letters

^ - anchors to beginning of line

• ^// matches lines that start with //

$ - anchors to end of line

• ;$ matches lines that end with ;

Main function

void main(int argc, char** argv) {

 printf(“hello, %s\n”, argv[1]);

}

-argv is the array of inputs from the command line
-Tokenized representation of the command line that invoked your program

-argv[0] is the name of the program being run

-argc stores the number of arguments ($#)+1

-Like bash!

Main is the first function your program executes once it starts

Expect a return of 0 for successful execution or -1 for failure

33 CSE 374 AU 20 - KASEY CHAMPION

Printf – print format function

▪Produces string literals to stdout based on given string with format tags
-Format tags are stand ins for where something should be inserted into the string literal

-%s – string with null termination, %d – int, %f – float

-Number of format tags should match number of arguments
- Format tags will be replaced with arguments in given order

▪Defined in stdio.h

▪printf(“format string %s”, stringVariable);
-Replaces %s with variable given

-printf(“hello, %s\n”, myName);

34 CSE 374 AU 20 - KASEY CHAMPION https://en.wikipedia.org/wiki/Printf_format_string

https://en.wikipedia.org/wiki/Printf_format_string

Strings in C

char s1[] = {’c’, ‘s’, ‘e’, ‘\0’};

char s2[] = “cse”;

char* s3 = “cse”;

All are equivalent ways to define a string in C

There are no “strings” in C, only arrays of characters

- “null terminated array of characters”

char* is another way to refer to strings in C

- Technically is a pointer to the first char in the series of chars for the string

Strings cannot be concatenated in C

printf(“hello, “ + myName + “\n”); // will not work

35 CSE 374 AU 20 - KASEY CHAMPION

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09

a q s h e l l o \0 r

Appendix

36 CSE 374 AU 20 - KASEY CHAMPION

