Lecture Participation Poll #15

Log onto
Or
Text CSE374 to 22333

CSE 374: Intermediate

Lecture 15: Debugging in C | rosemming concepisang

Tools

http://pollev.com/cse374

Administrivia

Klaatu is down again? -_-

HW?2 & HW3 due tomorrow, lock on Sunday
HW4 will be posted later today

Midterm on Friday

What is a Bug?

* A bug is a difference between the design of a
program and its implementation

Definition based on Ko & Meyers (2004)

*We expected something different from what is
happening

“it's not a bug it’s a feature” - Microsoft

« Examples of bugs
Expected factorial(5) to be 120, but it returned O

Expected program to finish successfully, but
crashed and printed "segmentation fault”

Expected normal output to be printed, but instead
printed strange symbols

4
b o Oaikasx >4a—*f‘ {/.\.7&0 7.032 ¢y 0rS
J 00 ‘ s = aafom / 9087 ¥YC 95 <oy
13w, (035 HMe ~me m,m) Y0/5725055(-0)
03y Pro » 2. l3oya26yis
Caon b 2./%062ews
CRInS -2 = 033 16.1.] ;1.,.,./ ‘T"‘J Jeob
{m - ow fmA
1/ :)Jﬁr*"“\ . Cos(ne T (Slv\c cJ\esk)
. | oo .l A Lty T_c

@0\0%*70 ?&kf\h‘ F
(MoTh) 'n Celay -

"\TJT Q+ ‘ b Lc N ° nln
o o e e
1 | Ladd Lo .

http://faculty.washington.edu/ajko/papers/Ko2004SoftwareErrorsFramework.pdf

Debugging techniques

= Comment out (or delete) code
tests to determine whether removed code was source of problem
Test one function at a time

* Add print statements
Check if certain code is reachable
check current state of variables

* Use a debugger
lets you control program execution line by line

lets you see current state of variables
In C: gdb

= Write tests

unit tests = test of input and output of singular code modules
often many tests to one function

- Type errors/warnings into Google
gcc -Wall -Werror will show you more compiler output

Debugging Basics

Debugging strategies look like:

1.Describe a difference between expected and actual behavior
2.Hypothesize possible causes

3.Investigate possible causes (if not found, go to step 2)

4.Fix the code which was causing the bug

5.Vast majority of the time spent in steps 2 & 3

Hypothesize

Now, let's look at the code for factorial()

Select all the places where the error could be coming from
= The if statement's "then" branch

= The if statement's "else” branch

= Somewhere else

int factorial (int x) {
if (x == 0) {
return x;
} else {
return x * factorial (x-1);

}

Investigate

Let's investigate the base case and recursive case

Base case is the "if then" branch
Recursive case is the "else" branch

Case

Base

Recursive

Recursive

Recursive

Input

factorial(0)
factorial(l)
factorial(2)

factorial(3)

Math Equivalent

int factorial (int x) {

1if (x == 0) |
return Xx;
} else {

return x * factorial (x-1);

Expected Actual

1 2727
1 227
2 227
6 227

Investigate

* One way to investigate is to write code to int factorial (int x) {
test different inputs if (x == 0) {

. . return Xx;
« |If we do this, we find that the base case has } else ({
a problem return x * factorial (x-1);

}
}

Case Input Math Equivalent Expected Actual
Base factorial(0) 0! =1 1 0
Recursive factorial(1l) 1! =1 1 0
Recursive factorial(2) 2! =1 % 2 2 0

Recursive factorial(3) 3! =1 % 2 % 3 6 0

Fix

int factorial (int x) {
if (x == 0) {
return—s
} else {
return x * factorial (x-1);
}
}
Case Input Math Equivalent
Base factorial(0) ! =1
Recursive factorial(l) 1! =1
Recursive factorial(2) 2 =1 % 2
Recursive factorial(3) 3 =1 % 2 % 3

int factorial (int x)
if (x == 0) {
return 1;
} else {

{

return x * factorial (x-1);

Expected Actual
1 1
1 1
5 2
6 6

Common C Bugs

forget to free -> program uses more memory than needed

memory leak -> lose pointer to start of dynamically allocated memory, can't free
keep using after free -> later calls to malloc may reuse freed memory

double free -> can corrupt internal data structures of malloc

dangling pointer -> lose memory that pointer referenced, dereferencing dangling
pointer, undefined behavior

Segmentation Fault

- attempt to access memory that “does not belong to you”
- indicates memory corruption
- Can be caused by:

array index out of bounds
accessing freed memory
dereferencing null pointer
changing String(char*) literal

https://en.wikipedia.org/wiki/Segmentation fault

https://en.wikipedia.org/wiki/Segmentation_fault

C Debugger

= A debugger is a tool that lets you stop running programs, inspect values etc...

instead of relying on changing code (commenting out, printf) interactively examine variable values, pause and
progress set-by-step

don't expect the debugger to do the work, use it as a tool to test theories
Most modern IDEs have built in debugging functionality

=‘gdb’ -> gnu debugger, standard part of linux development, supports many languages
techniques are the same as in most debugging tools
can examine a running file
can also examine core files of previous crashed programs

=\Want to know which line we crashed at (backtrace)
" Inspect variables during run time

=Want to know which functions were called to get to this point (backtrace)

Meet gdb

» Comp”e Code Wlth ‘—g’ ﬂag Breakpnintll, _fa::turial (x=1@) at factorial.e:18
gcc -g program.c %gdb}) if [x = @) o
saves human readable info B return x % factorial({x-1):
. . (gdb) n
* Open program with gdb <executable file>
Breakpoint 1, factorial (x=9) at factorial.c:
{gdb) n
21 't ¥ * factorial(x-1);
=start or restart the program: run <program args> (re
quit the program: kill , . ,
. . Breakpoint 1, factorial (x=B) at factorial.c:
quit gdb: quit 18 if (x == 8) {
{gdb) n _
= Reference information: help (gdb) n X rectortal bl
Most commands have short abbreviations
_ back Breakpoint 1, factorial (x=7) at factorial.c:
bt = backtrace 18 if (x == @) {
n = next (gdb) n
s = ste 21 return x * factorial(x-1);
. quif (gdb) n
<return> Often repeats the |ast Command BIEﬂkpﬂint 1' fﬂctﬂriﬂl :"’[=ﬁ} at fﬂctﬂriﬂl-. F

18 if (x == @) {

(gdb) [

[Video] gdb debugger demo

https://www.youtube.com/watch?v=bWH-nL7v5F4

GDB QUICK REFERENCE cbs version 5

Essential Commands
gdb program [core] debug program [using coredump cone]

b [ﬁle:]function

run [arglist]

set breakpoint at function [in ﬁle]

start your program [with arglist]

bt backtrace: display program stack

p ezpr display the value of an expression

c continue running your program

n next line, stepping over function calls
s next line, stepping into function calls

Starting GDB

gdb start GDB, with no debugging files

gdb program begin debugging program

gdb program core debug coredump core produced by
program

describe command line options

gdb --help

Stopping GDB
quit exit GDB; also q or EOF (eg C-d)

INTERRUPT (eg C-c) terminate current command, or
send to running process

Getting Help

help list classes of commands
help class one-line descriptions for commands in
class

help command describe command

Executing your Program

run arglist start your program with arglist

run start your program with current argument
list

run ... <inf >outf start your program with input, output
redirected

kill kill running program

Breakpoints and Watchpoints

break [file:]line
b [ﬁle:]line
break [file:]func
break +offset

break -offset
break *addr
break

break ... if ezpr

cond n [expr]

tbreak ...

rbreak [ﬁle -] regex

watch expr
catch event

info break
info watch

clear

clear [file:]fun
clear [ﬁle:]line
delete [n]

disable [n]
enable [n]

enable once [n]
enable del [

ignore n count

commands n
[silent]
command-list

and

set breakpoint at line number [in ﬁle]
eg: break main.c:37

set breakpoint at func [in ﬁle]
set break at offset lines from current stop

set breakpoint at address addr
set breakpoint at next instruction
break conditionally on nonzero ezpr

new conditional expression on breakpoint
n; make unconditional if no expr

temporary break; disable when reached

break on all functions matching regez [in
fite]

set a watchpoint for expression ezpr

break at event, which may be catch,

throw, exec, fork, vfork, load, or
unload.

show defined breakpoints
show defined watchpoints

delete breakpoints at next instruction
delete breakpoints at entry to fun()
delete breakpoints on source line

delete breakpoints [or breakpoint n]

disable breakpoints [or breakpoint n]
enable breakpoints [or breakpoint n]

enable breakpoints [or breakpoint n];
disable again when reached

enable breakpoints [or breakpoint n];
delete when reached

ignore breakpoint n, count times

execute GDB command-list every time
breakpoint n is reached. [silent

suppresses default display]

ond af rammand.lict

https://courses.cs.washington.edu/courses/cse374/19sp/refcard.pdf

Execution Control

continue [count]
c [count]

step [count]
s |count
stepi [count]

si |count

next [count]
n [count]

nexti [count]
ni [count]

until [location]
finish
return [expr]

signal num
jump line
jump *address
set var=exzpr

Display
print [/f] [ea:pr]
p [/1] [ezpr]

HOP¢OE AR

call [/f] expr
x [/Nuf] ezpr

N

continue running; if count specified, ignore
this breakpoint next count times

execute until another line reached; repeat
count times if specified

step by machine instructions rather than
source lines

execute next line, including any function
calls

next machine instruction rather than
source line

run until next instruction (or location)

run until selected stack frame returns

pop selected stack frame without
executing |setting return value]

resume execution with signal s (none if 0)

resume execution at specified line number
or address

evaluate expr without displaying it; use
for altering program variables

show value of ezpr [or last value $]
according to format f:

hexadecimal

signed decimal

unsigned decimal

octal

binary

address, absolute and relative
character

floating point

like print but does not display void

examine memory at address ezpr; optional
format spec follows slash
count of how many units to display

CSE 374 AU 20 - KASEY CHAMPION 13

https://courses.cs.washington.edu/courses/cse374/19sp/refcard.pdf

Useful GDB Commands

bt - stack backtrace
*up, down - change current stack frame

= 1ist - display source code (list n, list <function
name>)

"print <expression> - evaluate and print
expression

"display <expression>

re-evaluate and print expression every time execution
pauses

undisplay - remove an expression from the recurring list

*info locals - printall locals (but not
parameters)

*x (examine) - look at blocks of memory in
various formats

If we get a segmentation fault:
1. gdb ./myprogram

2. Type "run"into GDB

3. When you get a segfault, type "backtrace”
or "bt"

4. Look at the line numbers from the

backtrace, starting from the top

B rea pr' ntS "break - sets breakpoint

break <function name> | <line numbers | <file>:<line number>

*info break - print table of currently set

temporarily stop program running breakooint
reakpoints

at given points
look at values in variables "clear - remove breakpoints

test conditions *disable/enable temporarily turn breakpoints

break function (or line-number) off/on
conditional breakpoints

to skip a bunch of iterations "continue - resume execution to next breakpoint

or end of program

to do assertion checking

= step - execute next source line

T . "next — execute next source line, but treat function

Breakpoint 1 at @x488&4c: file factorial.c, line 18. Ca”S as a Single statement and don’t “Step in"
[{gdb) run 18

Starting program: fhomes/champk/TestingDemo/factorial.o 18 = finish - execute to the COﬂClUSiOﬂ Of the current

Breakpoint 1, factorial (x=18) at factorial.c:18B fo\CtiCHW
18 if (x = @) {

[(gdb) n

21 return x * factorial(x-1);

how to recover if you meant “next” instead of “step”

Valgrind

*Valgrind is a tool that simulates your program to find memory errors
catches pointer errors during execution
prints summary of heap usage, including details of memory leaks

gcc —-g -0 myprogram myprogram.c

valgrind --leak-check=full myprogram argl ag

* Can show: Memory leaks -- where pointers to malloc'd blocks are
Use of uninitialized memory lost forever
Reading/writing memory after it has been free'd Mismatched use of malloc/new/new [] vs
Reading/writing off the end of malloc'd blocks free/delete/delete []
Reading/writing inappropriate areas on the stack Overlapping src and dst pointers in memcpy() and

related functions

[Video] Valgrind Demo

https://www.youtube.com/watch?v=bb1bTJtgXrI

Valgrind Example

#include <stdio.h>
#include <stdlib.h>

==23779==
int main(int argc, char** argv){ ==23779==
o e
. * = . ' R = —— ———
int *a malloc(sizeof(int) 10); iS5 G

if (!a) return -1; /*malloc failed*/

afi] = i; ==23779==

} ==23779==
free(a); ==23779==
return 0; ==23779==

} ==23779==
examplel.c —=23779==

==23779==

Attempt to write 4 bytes to an invalid location in ==23779==
memory (sizeof(int)) ==23779==
[10] -> ind fbound 23T
a -> Index out ot bounds ==23779==
==23779==

==23779==

$ gcc -Wall -pedantic -g examplel.c -o example
$ valgrind ./example

Memcheck, a memory error detector

Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
Command: ./example

Invalid write of size 4
at 0x400548: main (examplel.c:9)

Address 0x4c30068 is 0 bytes after a block of size 40 alloc'd
at 0x4A05E46: malloc (vg_replace malloc.c:195)
by 0x40051C: main (examplel.c:6)

HEAP SUMMARY:
in use at exit: 0 bytes in 0 blocks
total heap usage: 1 allocs, 1 frees, 40 bytes allocated

All heap blocks were freed -- no leaks are possible

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)

terminal

Valgrind EX2

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv){
int i;
int a[l1l0];
for (i = 0; i < 9; i++)
a[i] = i;

for (i1 = 0; i < 10; i++)
printf("sd ", a[i]);

}

printf("\n");

return 0;

example2.c

attempting to print a[10] which is not an initialized
value (array index out of bounds)

$ gcc -Wall -pedantic -g example2.c -o example2

$ valgrind ./example2

==24599== Memcheck, a memory error detector

==24599== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
==24599== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==24599== Command: ./example2

==24599==

==24599== Conditional jump or move depends on uninitialised value(s)

at 0x33A8648196: vfprintf (in /1lib64/libc-2.13.s0)

by 0x33A864FB59: printf (in /l1lib64/libc-2.13.s0)

by 0x400567: main (example2.c:11)

Use of uninitialised value of size 8
at 0x33A864484B: itoa word (in /1libé64/libc-2.13.s0)
by 0x33A8646D50: vfprintf (in /1ib64/libc-2.13.s0)
by 0x33A864FB59: printf (in /l1lib64/libc-2.13.s0)

==24599== by 0x400567: main (example2.c:11)

==24599==

Conditional jump or move depends on uninitialised value(s)

==24599== at 0x33A8644855: itoa word (in /1libé64/libc-2.13.s0)
==24599== by 0x33A8646D50: vfprintf (in /1ib64/libc-2.13.s0)
==24599== by 0x33A864FB59: printf (in /1lib64/libc-2.13.s0)
==24599== by 0x400567: main (example2.c:11)

==24599==

012345686787

==24599==

==24599== HEAP SUMMARY:

==24599== in use at exit: 0 bytes in 0 blocks

==24599== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==24599==

==24599== All heap blocks were freed -- no leaks are possible
==24599==

==24599== For counts of detected and suppressed errors, rerun with: -v
==24599== Use --track-origins=yes to see where uninitialised values come from
==24599== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 6 from 6)

terminal

Testing

Computers don't make mistakes- people do!

‘I'm almost done, | just need to make sure it works”
— Naive 14Xers

= Software Test: a separate piece of code that exercises the code you are assessing by providing
input to your code and finishes with an assertion of what the result should be.

Isolate

—
.

Break your code into small modules
Build in increments
Make a plan from simplest to most complex cases

Test as you go

» U A W N

As your code grows, so should your tests

CSE 373 SP 18 - KASEY GHAMPION

Types of Tests

 Black Box
Behavior only — ADT requirements
From an outside point of view
Does your code uphold its contracts with its users?
Performance/efficiency

Includes an understanding of the implementation
Written by the author as they develop their code
Break apart requirements into smaller steps

“unit tests” break implementation into single assertions

CSE 373 SP 18 - KASEY CHHAMPION

What to test?

Expected behavior
The main use case scenario
Does your code do what it should given friendly conditions?

Forbidden Input

What are all the ways the user can mess up?

Empty/Null
Protect yourself!
How do things get started?

Boundary/Edge Cases
First
last

Scale
Is there a difference between 10, 100, 1000, 10000 items?

CSE 373 SP 18 - KASEY CHAMPION

Tips for testing

*You cannot test every possible input, parameter value, etc.
Think of a limited set of tests likely to expose bugs.

* Think about boundary cases
Positive; zero; negative numbers
Right at the edge of an array or collection's size

* Think about empty cases and error cases
O, -1, null; an empty list or array

= test behavior in combination
Maybe add usually works, but fails after you call remove
Make multiple calls; maybe size fails the second time only

Midterm Review

Linux File Permissions

¥ champk@klaatu:~
Perm|SS|On Groups Warning: Permanently added ‘'klaatu.cs.washington.edu,128.208.1.150" (ECDSA) to the list of known hosts.
champk@klaatu.cs.washington.edu's password:
. u - Owner [champk@klaatu ~]$ echo $SHELL
. g — Group /bin/bash
. o - Others [champk@klaatu ~]$ 1s
R a- A” users demo.txt output.txt
'#PeterPan.txt#’
Permission TypeS [champk@klaatu ~]$ 1s -al
. r-read - auser’s ability to read the contents of the champk fac_cs 7 2020
fl root root 30 12:04
lHne. champk fac_cs 5 2020
. W - write - a user’s capability to write or modify a file champk fac_cs 7 2028 bash history
. 2 champk fac_cs 23 2020
or dlrectory. 1 champk fac_cs 2 2020 demo.txt
’ HE . 3 champk fac_cs 5 2020
. X -execute - a user’s capability to execute a file or e e
view the contents of a directory. druxr-xr-x 4 champk fac_cs 12 2020
drwxr-xr-x 4 champk fac_cs 2020
reading |S —| drwxr-xr-x 2 champk fac_cs 2020
drwxr-xr-x 2 champk fac_cs 2020
. rw rw rw =owner, group and all users have read & drwxr-xr-x 2 champk fac_cs 2020
- - - -rw-r--r-- 1 champk fac_cs 2020 output.txt
Wri’[e permissions 1 champk fac_cs 2020 '#PeterPan.txt#’
. . . . by 3 champk fac_cs 2020
- first character is either a - or a d : d means “directory”, - 2 champk fac_cs 2020
2 champk fac_cs 2020
" means f||e 2 champk fac_cs 2020
L . champk fac_cs 2020 .viminfo
chmod <group>+||-<permission> <file> champk@klaatu ~13

* chmod a-rw filel :remove read and write
permissions on file1 for all users

* chmod a+trw filel :add read and write permissions
on file1 for all users

https://www linux.com/training-tutorials/understanding-linux-file-permissions/

Shell Variables

= Shell variables = string substitution
Declare variables in the shell to easily refer to a given string
All variables are strings

 Declare variables in the terminal with a name and a string value
<var name>=%“<var string>"
EX: myvar="myvalue”

Note: no white space allowed on either side of the “=

= Refer to your variable using the “s” symbol before the var name
$<var name>

EX: echo S$myvar
myvalue

= Alias
Rename a bash command, create your own shortcut
alias <string>=“substitution string”
EX:alias cheer=“echo hip hip horray!”
Only exists within the currents state of your shell
Can store alias in bashrc file to preserve alias across all shells

Bash Script Variables

*When writing scripts you can use the following default variables

$# - stores number of parameters entered

Ex:if [$# -1t 1] testsif script was passed less than 1argument

$N - returns Nth argument passed to script

Ex: sort $1 passes first string passed into script into sort command

$0 - command name

Ex: echo “$0 needs 1 argument” prints “<name of script> needs 1 argument”
$* returns all arguments

$@ returns a space separated string containing all arguments
"$@” prevents args originally quoted from being read as multiple args

$ grep 'computer' /usr/share/dict/words

arep

ese
ise
= Search for a given string within a given file 1te
rep [options] pattern [files] izable
I+eP P P 1zation
EX: grep “computer” /usr/share/dict/words iza
ized
= Helpful Options i 7es
-c : prints count of lines with given pattern izing
-h :display matched lines (without filenames) Like

nik
S

-1 :ignore case when matching

-1 :display list of filenames with matches :
micro

micro

mini

mini

multi
multimicro
super
super

tele

https://www.geeksforgeeks.org/grep-command-in-unixlinux/

https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/grep-command-in-unixlinux/

Redirecting Streams

Redirection Syntax:

< yourlnput

> yourOutput

>> appendYourOutput

2> yourkrror

&> yourOutputAndError

Stdout & stderr default to terminal

Examples
cmd > file sends stdout to file
cmd 2> file sends stderr to file
cmd 1> output.txt 2> error.txt redirects both stdout and stderr to files
cmd < file accepts input from file
Instead of directly putting arg in command, pass args in from given file
cat filel.txt file2.txt file3.txtorcat < filelist.txt

https://www.gnu.org/software/bash/manual/html node/Redirections.html

https://www.gnu.org/software/bash/manual/html_node/Redirections.html

/O Piping

We can feed the stdout of one process to the stdin of
another using a pipe (“|")

Data flows from process to the other through multiple
transformations seamlessly

Similar to redirection, but specifically passes streams into other
programs instead of their defaults

Example:

Instead of:
du -h -d 1. > sizes.txt
grep ‘M’ sizes.txt
We can use piping
du-h-d1.[grep M

= Piping is effective when you have one set of data
that needs to be transformed multiple times

Cmd1 | cmd2 - pipe output of cmd1 into input of cmd2

Video: The Magic of Piping

pipes

ASotia Evans
@bmrk

drawings. jvns. ca

Sometimes you want O pipe is o pair uhe:\ ls does
y Pﬂ- . w i
1o send the autput of one of 2 magical || Writel®, “hi)
Process 4o the inpud of anather || Tile descriptors || € can read !
43 @i @ read(e)
13] WL 'l 15 - “hi"
53 4 e
N oa oty shim \i ® xﬁdm‘l
pipe beffers +wh:1'i* your you can pipe
arqet process dies? S0 MANY 4h
]5 I’mbsn:ﬁ.:\fx urite ; © 'h:&ﬁher' 8
ia:dlllﬂn o "ﬂsé S, $ alblciale
22}
—— g s || NDBRA
Uh na iT my gl
bU-{"FEr is foll you .' SIGPIPE if @ gets p}r{{:r
have to wait closed () usually dies) pipes

https://youtu.be/tc4ROCJYbm0?t=340

H: Statements if [$# -ne 2]

then
1if [test]; then echo "$0: takes 2 arguments" 1>&2
commands exit 1
fi fi
if [-f .bash profile]; then

echo “You have a .bash profile.”
else
echo “You do not have a .bash profile”

fi

https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php

https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php

Loops

while [test] counter=1 while [$# -gt 0]
do while [Scounter -le 10] do
do *
commands echo %
p echo Scounter shift
one
((counter++)) done
done
for variable in words; do for value in {1..5}
do
commands
echo Svalue
done

done

https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php

https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php

Regex special characters

\ - escape following character () — groups patterns for order of operations

. —matches any single character at least once [] — contains literals to be matched, single or range
c.tmatches {cat, cut, cota] [a-b] matches all lowercase letters
| - or, enables multiple patterns to match against

~ - anchors to beginning of line
a |b matches {a} or {b}

* - matches 0 or more of the previous pattern (greedy match) *// matches lines that start with //
a* matches {, a, aa, aaa, ..} $ - anchors to end of line
? —matches 0 or 1 of the previous pattern : $ matches lines that end with ;

a? matches {, a}

+ - matches one or more of previous pattern
a+ matches {a, aa, aaa, ..}

{n} — matches exactly n repetitions of the preceding
a{3} matches {aaa}

Main function

vold main (int argc, char** argv) {

printf (“hello, %s\n”, argv[1l]);

argv is the array of inputs from the command line
Tokenized representation of the command line that invoked your program

argv|[O] is the name of the program being run
argc stores the number of arguments ($#)+1

Like bash!

Main is the first function your program executes once it starts
Expect a return of O for successful execution or -1 for failure

Printf — print format function

* Produces string literals to stdout based on given string with format tags
Format tags are stand ins for where something should be inserted into the string literal
%s - string with null termination, %d - int, %f - float
Number of format tags should match number of arguments

Format tags will be replaced with arguments in given order

= Defined in stdio.h

= printf(“format string %s”, stringVariable);
Replaces %s with variable given

printf (“*hello, %s\n”, myName) ;

https://en.wikipedia.org/wiki/Printf format string

https://en.wikipedia.org/wiki/Printf_format_string

Strings in C

char s1[] = {'c’, ‘s’', ‘e’, “\0'};
char s2[] = “cse”;
char* s3 = Y“cse”;

All are equivalent ways to define a string in C

There are no “strings” in C, only arrays of characters
- "null terminated array of characters”

char* is another way to refer to strings in C

- Technically is a pointer to the first char in the series of chars for the string

Strings cannot be concatenated in C
printf (“*hello, ™ + myName + “\n”); // will not work

CSE 374 AU 20 - KASEY CHAMPION 35

Appendix

CSE 374 AU 20 - KASEY CHAMPION 36

