
Lecture 11: Dynamic
Memory Allocation

Continued…

CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #11

Log onto pollev.com/cse374

Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia

Sorry about HW shenanigans -_-
HW1 Deadline pushed to end of quarter - Dec 3rd
HW 2 Deadline Extended due to Klaatu outage

- FYI autograder is still assessing old versions of course pages, it runs your code on the old versions so it still
functions properly in assessing your code correctness, but if your code has differences the output is
confusing

HW3 due next thursday

Midterm Topics
Bash Commands

- file manipulation
- variables & aliases
- redirects & pipes
- scripting
- Regex
- HW1 & HW2

C Programming
- Pointers
- Arrays & Strings
- Automatic, static and dynamic memory allocation
- Struct basics (Monday)

2 CSE 374 AU 21 - KASEY CHAMPION

Midterm will be in class on Friday 10/29, paper exam
Midterm will be open paper note, closed electronic devices

Sorry Kasey is behind in email! Will be digging through this
weekend and also posting a bunch more materials to the
course website

Memory Allocation

▪ Allocation refers to any way of asking for the operating
system to set aside space in memory

▪ How much space? Based on variable type & your system
- to get specific sizes for your system use “sizeof(<datatype>)”

function in stdlib.h

▪ Global Variables – static memory allocation
- space for global variables is set aside at compile time, stored in

RAM next to program data, not stack

- space set aside for global variables is determined by C based on
data type

- space is preserved for entire lifetime of program, never freed

▪ Local variables – automatic memory allocation
- space for local variables is set aside at start of function, stored in

stack

- space set aside for local variables is determined by C based on
data type

- space is deallocated on return

3 CSE 374 AU 20 - KASEY CHAMPION https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html

* pointers require space needed for an address – dependent on your
system - 4 bytes for 32-bit, 8 bytes for 64-bit

Type Storage Size Value Range

char 1 byte -128 to 127 or 0 to 255

unsigned

char

1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes -32,786 to 32,767 or -2,147,483,648

to 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned

short

2 bytes 0 to 65,535

long 8 bytes -9223372036854775808 to

9223372036854775807

unsigned

long

8 bytes 0 to 18446744073709551615

float 4 bytes 1.2E-38 to 3.4E+38

double 8 bytes 2.3E-308 to 1.7E+308

long double 10 bytes 3.4E-4932 to 1.1E+4932

https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html

Does this always work?

▪Static and automatic memory allocation – memory set aside is known at runtime
-Fast and easy to use

-partitions the maximum size per data type – not efficient

- life of data is automatically determined – not efficient

▪What if we don’t know how much memory we need until program starts running?

4 CSE 374 AU 20 - KASEY CHAMPION

char* ReadFile(char* filename)

{

 int size = GetFileSize(filename);

 char* buffer = AllocateMem(size);

 ReadFileIntoBuffer(filename, buffer);

 return buffer;

}

You don’t know how big the filesize is

Dynamic Allocation

▪Situations where static and automatic allocation aren’t sufficient
-Need memory that persists across multiple function calls

- Lifetime is known only at runtime (long-lived data structures)

-Memory size is not known in advance to the caller
- Size is known only at runtime (ie based on user input)

▪Dynamically allocated memory persists until:
-A garbage collector releases it (automatic memory management)

- Implicit memory allocator, programmer only allocates space, doesn’t free it

- “new” in Java, memory is cleaned up after program finishes

- Your code explicitly deallocates it (manual memory management)

- C requires you manually manage memory

- Explicit memory allocation requires the programmer to both allocate space and free it up when finished

- ”malloc” and “free” in C

▪Memory is allocated from the heap, not the stack
-Dynamic memory allocators acquire memory at runtime

5 CSE 374 AU 20 - KASEY CHAMPION

Storing Program Data in the RAM

▪When you trigger a new program the operating system
starts to allocate space in the RAM
-Operating System will default to keeping all memory for a program

as close together within the ram addresses as possible

-Operating system manages where exactly in the RAM your data is
stored
- Space is first set aside for program code (lowest available addresses)

- Then space is set side for initialized data (global variables, constants, string literals)

- As program runs…

- When the programmer manually allocates memory for data it is stored in the next
available addresses on top of the initialized data, building upwards as space is
needed

- When the program requires local variables they are stored in the empty space at
top of RAM, leaving space between stack and heap

- When the space between the stack and heap is full - crash (out of memory)

6 CSE 374 AU 20 - KASEY CHAMPION

The heap is a large pool of available memory set aside

specifically for dynamically allocated data

Allocating Memory in C with malloc()

-void* malloc(size_t size)
- allocates a continuous block of “size” bytes of uninitialized memory

- Returns null if allocation fails or if size == 0

- Allocation fails if out of memory, very rare but always check allocation was successful before using pointer

- void* means a pointer to any type (int, char, float)

- malloc returns a pointer to the beginning of the allocated block

-var = (type*) malloc(sizeInBytes)
- Cast void* pointer to known type

- Use sizeof(type) to make code portable to different machines

-free deallocates data allocated by malloc

-Must add #include <stdlib.h>

-Variables in C are uninitialized by default
- No default “0” values like Java

- Invalid read – reading from memory before you have written to it

7 CSE 374 AU 20 - KASEY CHAMPION

//allocate an array to store 10 floats

float* arr = (float*) malloc(10*sizeof(float));

if (arr == NULL)

{

 return ERROR;

}

printf(“%f\n”, *arr) // Invalid read!

<add something to array>

<print f again, now it’s ok>

calloc()

var = (type*) calloc(numOfElements, bytesPerElement);

▪ Like malloc, but also initializes the memory by filling it with 0 values

▪Slightly slower, but useful for non-performance critical code

▪Also in stdlib.h

8 CSE 374 AU 20 - KASEY CHAMPION

//allocate an array to store 10 doubles

double* arr = (double*) calloc(10, sizeof(double));

if (arr == NULL)

{

 return ERROR;

}

printf(“%f\n”, arr[0]) // Prints 0.00000

realloc()

▪void* realloc(void* p, size_t size)
-creates a new allocation with given size, copies the contents of p into it and then frees p

-saves a few lines of code

-can sometimes be faster due to allocator optimizations

-part of stdlib.h

9 CSE 374 AU 20 - KASEY CHAMPION

Freeing Memory in C with free()

▪void free(void* ptr)
- Released whole block of memory stored at location ptr to

pool of available memory
- ptr must be the address originally returned by malloc (the

beginning of the block) otherwise system exception raised
- ptr is unaffected by free

- Set pointer to NULL after freeing it to deallocate that space too

- Calling free on an already released block (double free) is
undefined behavior – best case program crashes

- Rule of thumb: for every runtime call to malloc there should
be one runtime call to free

- if you lose all pointers to an object you can no longer free it
– memory leak!
- be careful when reassigning pointers
- this is usually the cause of running out of memory- unreachable data that

cannot be freed

- if you attempt to use an object that has been freed you hit a
dangling pointer

- all memory is freed once a process exits, and it is ok to rely
on this in many cases

10 CSE 374 AU 20 - KASEY CHAMPION

//allocate an array to store 10 floats

float* arr = (float*) malloc(10*sizeof(float));

if (arr == NULL)

{

 return ERROR;

}

for (int i = 0; i < size*num; i++)

{

 arr[i] = 0;

}

free(arr);

arr = NULL; // Optional

Example

11 CSE 374 AU 20 - KASEY CHAMPION

void foo(int n, int m)

{

 int i, *p; // declare local variables

 p = (int*) malloc(n*sizeof(int)); //allocate block of n ints

 if (p == NULL) // check for allocation error

 {

 perror(“malloc”); //prints error message to stderr

 exit(0);

 }

 for (i=0; i<n; i++) // initialize int array

 p[i] = i;

 p = (int*) realloc(p, (n+m)*sizeof(int)); // add space for m at end of p block

 if (p == NULL) // check for allocation error

 {

 perror(“realloc”);

 exit(0);

 }

 for (i=n; i<n+m; i++) // initialize new space at back of array

 p[i] = i;

 for (i=0; i<n+m; i++) // print out array

 printf(“%d\n”, p[i]);

 free(p); // free p, pointer will be freed at end of function

}

Example: 1 – initialized data

12 CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)

{

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv)

{

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // do stuff with your copy!

 free(ncopy);

 return EXIT_SUCCESS;

}

Example: 2 – main local variable in stack

13 CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)

{

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv)

{

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // do stuff with your copy!

 free(ncopy);

 return EXIT_SUCCESS;

}

1 2 3 4

Example: 3 – copy local variables in stack

14 CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)

{

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv)

{

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // do stuff with your copy!

 free(ncopy);

 return EXIT_SUCCESS;

}

1 2 3 4

Example: 4 – malloc space for int array

15 CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)

{

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv)

{

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // do stuff with your copy!

 free(ncopy);

 return EXIT_SUCCESS;

}

1 2 3 4

Example: 5 – fill available space from local var

16 CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)

{

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv)

{

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // do stuff with your copy!

 free(ncopy);

 return EXIT_SUCCESS;

}

1 2 3 4

0

Example: 6 – finish copy and free stack space

17 CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)

{

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv)

{

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // do stuff with your copy!

 free(ncopy);

 return EXIT_SUCCESS;

}

1 2 3 4

Example: 7 – free ncopy from heap

18 CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)

{

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv)

{

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // do stuff with your copy!

 free(ncopy);

 return EXIT_SUCCESS;

}

1 2 3 4

Memory Leak

▪A memory leak occurs when code fails to deallocate dynamically-allocated memory that is
no longer used
-Caused by forgetting to call free() on a malloc’d block of memory or losing a pointer to a malloc-d block

-Program’s memory will keep growing

▪What’s the problem?
-Short-lived program might not be an issue, all memory is deallocated when program ends

-Long-lived programs might slow down over time, exhaust all available memory and crash or starve other
programs of memory

19 CSE 374 AU 20 - KASEY CHAMPION

Common Memory Errors

20 CSE 374 AU 20 - KASEY CHAMPION

int x[] = {1, 2, 3};

free(x);

char** strings = (char**)malloc(sizeof(char)*5);

free(strings);

x is a local variable stored in stack, cannot be freed

x = (int*)malloc(M*sizeof(int));

free(x);

y = (int*)malloc(M*sizeof(int));

free(x);

Double free and Forgetting to free memory “memory leak”

x = (int*)malloc(M*sizeof(int));

free(x);

y = (int*)malloc(M*sizeof(int));

for (i=0; i<M; i++)

 y[i] = x[i];

Accessing freed memory

Mismatch of type - wrong allocation size

Common Memory Errors

21 CSE 374 AU 20 - KASEY CHAMPION

#define LEN 8

int arr[LEN];

for (int i = 0; i <= LEN; i++)

 arr[i] = 0;

int* foo()

{

 int val = 0;

 return &val;

}

Out of bounds access

dangling pointer

Dereferencing a non-pointer

int sum_int(int* arr, int len)

{

 int sum;

 for (int i = 0; i < len; i++)

 sum += arr[i];

 return sum;

}

Reading memory before allocation

long val;

printf(“%d”, &val);

int foo()

{

 int* arr = (int*)malloc(sizeof(int)*N);

 read_n_ints(N, arr);

 int sum = 0;

 for (int i = 0; i < N; i++)

 sum += arr[i];

 return sum;

}

memory leak – failing to free memory

Finding and Fixing Memory Errors

▪Valgrind is a tool that simulates your program to find memory errors
- it can detect all of the errors we’ve discussed so far!

-catches pointer errors during execution

-prints summary of heap usage, including details of memory leaks

valgrind [options] ./myprogram arg1 arg2

Useful option: --leak-check=full

22 CSE 374 AU 20 - KASEY CHAMPION

Appendix

23 CSE 374 AU 20 - KASEY CHAMPION

24 CSE 374 AU 20 - KASEY CHAMPION

25 CSE 374 AU 20 - KASEY CHAMPION

errno

▪How do you know if an error has occurred in C?
-no exceptions like Java

▪usually return a special error value (NULL, -1)

▪ stdlib functions set a global variable called errno
-check errno for specific error types

- if (errno == ENOMEM) // allocation failure

-perror(“error message”) prints to stderr

26 CSE 374 AU 20 - KASEY CHAMPION

C Garbage Collector

▪garbage collection is the automatic reclamation of heap-allocated memory that is never
explicitly freed by application
-used in many modern languages: Java, C#, Ruby, Python, Javascript etc…

- “conservative” garbage collectors do exist for C and C++ but cannot collect all garbage

▪Data is considered “garbage” if it is no longer reachable
- lost pointers to data (Like a dropped link list node in Java)

-memory allocator can sometimes get help from the compiler to know what data is a pointer and what is not

27 CSE 374 AU 20 - KASEY CHAMPION

