- - T e
B > L e 5
S N 0 s T
i AR Y %

Lecture Participation Poll #10

_ Log onto
% Or

I_e Ctu re 1 O: Dyn a m iC CSE 374: Intermediate

Programming Concepts and

Memory Allocation | o

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia

Assignments
HW3 live - due next Thursday
HW?2 due Thursday
HW1 deadline pushed out

Array Syntax with Pointers

*You can use the bracket notation to index pointers
char arr[] = "cse";
char* ptr = arr;
char letter ¢ = *ptr; // equivalent to ptr[0]
char letter e = ptr[2];

* The bracket syntax is just another way of saying this:
letter e = *(ptr + 2);

= "Pointer arithmetic” works with other types like int, long

Pointer Mystery

#include <stdio.h>
// What does the program print?

void mystery(char *a, int *b, int c)
{

int *d = b - 1;

c = *b + c;

*b = ¢ - *d;

*d — *b — *d;

al2] = alb - d];

int main(int argc, char **argv)

{

char ant[4] = "bed";
int x[2];

*X = 67

x[1] = 7;

int y = 4;

int *z = &y;

*Z = *X,

printf ("%d %d %d %$s\n", *x, x[1],
mystery(ant, x + 1, y);
printf ("%$d %d %d %$s\n", *x, x[1],

ant

Output:
6 7 6 bed
176 bee

CSE 374 AU 20 - KASEY CHAMPION

4

Memory Allocation

= Allocation refers to any way of asking for the operating
system to set aside space in memory

* How much space? Based on variable type & your system

to get specific sizes for your system use “sizeof(<datatype>)”
function in stdlib.h

= Global Variables - static memory allocation

space for global variables is set aside at compile time, stored in
RAM next to program data, not stack

space set aside for global variables is determined by C based on
data type

space is preserved for entire lifetime of program, never freed

" Local variables - automatic memory allocation

space for local variables is set aside at start of function, stored in
stack

space set aside for local variables is determined by C based on
data type

space is deallocated on return

Type Storage Size Value Range

char 1 byte -128 to 127 or 0 to 255

unsigned 1 byte 0 to 255

char

signed char | 1 byte -128 to 127

int 2 or 4 bytes -32,786 to 32,767 or -2,147,483,648
to 2,147,483,647

unsigned int | 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned 2 bytes 0 to 65,535

short

long 8 bytes -9223372036854775808 to
9223372036854775807

unsigned 8 bytes 0 to 18446744073709551615

long

float 4 bytes 1.2E-38 to 3.4E+38

double 8 bytes 2.3E-308 to 1.7E+308

long double | 10 bytes 3.4E-4932 to 1.1E+4932

* pointers require space needed for an address - dependent on your
system - 4 bytes for 32-bit, 8 bytes for 64-bit

https://www.gnu.org/software/libc/manual/html node/Memory-Allocation-and-C.html

https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html

Does this always work?

= Static and automatic memory allocation — memory set aside is known at runtime
Fast and easy to use
partitions the maximum size per data type - not efficient
life of data is automatically determined - not efficient

*What if we don't know how much memory we need until program starts running?

char* ReadFile (char* filename)

{

int size = GetFileSize (filename) ;
char* buffer = AllocateMem(size); You|ldon't know how big the filesize is

ReadFileIntoBuffer (filename, buffer):;
return buffer;

Dynamic Allocation

= Situations where static and automatic allocation aren’t sufficient
Need memory that persists across multiple function calls

Lifetime is known only at runtime (long-lived data structures)

Memory size is not known in advance to the caller

Size is known only at runtime (ie based on user input)

* Dynamically allocated memory persists until:
A garbage collector releases it (automatic memory management)

Implicit memory allocator, programmer only allocates space, doesn't free it
“new” in Java, memory is cleaned up after program finishes <HOW DOES THIS WORK?
Your code explicitly deallocates it (manual memory management)
C requires you manually manage memory
Explicit memory allocation requires the programmer to both allocate space and free it up when finished

"malloc” and “free” in C

* Memory is allocated from the heap, not the stack
Dynamic memory allocators acquire memory at runtime

Storing Program Data in the RAM

Address Space Visualization

*When you trigger a new program the operating system OXEE
starts to allocate space in the RAM " Stack (local variables)

Operating System will default to keeping all memory for a program
as close together within the ram addresses as possible ‘

Operating system manages where exactly in the RAM your data is
stored t

Space is first set aside for program code (lowest available addresses)

Then space is set side for initialized data (global variables, constants, string literals)

As program runs... Heap (via malloc)
When the programmer manually allocates memory for data it is stored in the next

available addresses on top of the initialized data, building upwards as space is

needed

When the program requires local variables they are stored in the empty space at Initialized data (. data)
top of RAM, leaving space between stack and heap

When the space between the stack and heap is full - crash (out of memory) Program code (text)

The heap is a large pool of available memory set aside
specifically for dynamically allocated data 0x00..

Allocating Memory in C with malloc()

void* malloc(size t size)
allocates a continuous block of “size” bytes of uninitialized memory
Returns null if allocation fails or if size ==

Allocation fails if out of memory, very rare but always check allocation was successful before using pointer
void* means a pointer to any type (int, char, float)
malloc returns a pointer to the beginning of the allocated block

var = (type*) malloc(sizelInBytes)
Cast void* pointer to known type
Use sizeof (type) to make code portable to different machines

free deallocates data allocated by malloc
Must add #include <stdlib.h>
Variables in C are uninitialized by default if (arr == NULL)

No default “O” values like Java {

//allocate an array to store 10 floats

Invalid read - reading from memory before you have written to it return ERROR;

}

printf (“%f\n”, *arr) // Invalid read!
<add something to array>

<print f again, now it’s ok>

float* arr = (float*) malloc(l0*sizeof (float));

calloc()

var = (type*) calloc (numOfElements,

bytesPerElement) ;

= Like malloc, but also initializes the memory by filling it with O values

= Slightly slower, but useful for non-performance critical code

= Also in stdlib.h

//allocate an array to store 10 doubles
double* arr = (double*) calloc (10,
if (arr NULL)

{

return ERROR;

}

printf (“%f\n”, arr[0]) // Prints 0.00000

sizeof (double)) ;

realloc()

=void* realloc(void* p, size_t size)
creates a new allocation with given size, copies the contents of p into it and then frees p
saves a few lines of code
can sometimes be faster due to allocator optimizations
part of stdlib.h

Freeing Memory in C with free()

"vold free(void* ptr)

Released whole block of memory stored at location ptr to
pool of available memory

Btr must be the address originally returned by malloc (the
eginning of the block) otherwise system exception raised

ptr is unaffected by free

Set pointer to NULL after freeing it to deallocate that space too

Calling free on an already released block (double free) is
undefined behavior - best case program crashes

Rule of thumb: for every runtime call to malloc there should

be one runtime call to free
if you lose all pointers to an object you can no longer free it
- memory leak!

be careful when reassigning pointers

this is usually the cause of running out of memory- unreachable data that
cannot be freed

if you attempt to use an object that has been freed you hit a

dangling pointer

all memory is freed once a process exits, and it is ok to rely
on this in Many cases

//allocate an array to store 10 floats
float* arr = (float*) malloc(l0*sizeof (float));
if (arr == NULL)
{
return ERROR;

}
(int 1 = 0; 1 < size*num; 1i+t+)
{
arr[i] = 0;
}

free (arr) ;

arr = NULL; // Optional

Example

void foo(int n, int m)
{
int i, *p; // declare local variables
p = (int*) malloc(n*sizeof (int)); //allocate block of n ints
if (p == NULL) // check for allocation error
{

perror (“malloc”); //prints error message to stderr

exit (0) ;
}
for (i=0; i<n; i++) // initialize int array
pli]l = 1i;
p = (int*) realloc(p, (n+m)*sizeof(int)); // add space for m at end of p block
if (p == NULL) // check for allocation error

perror (“realloc”);
ex1it (0) ;

for (i=n; i<n+m; 1i++) // initialize new space at back of array
= i
for (i=0; i<n+m; i++) // print out array

printf (“%d\n”, pli]);
free(p); // free p, pointer will be freed at end of function

Example: 1 - initialized data

#include <stdlib.h>

int* copy(int af[], int size)

{

int i, *az;

a2 = malloc(size*sizeof (1int));
if (a2 == NULL)
return NULL;
for (1 = 0; 1 < size; 1i++)
a2[i] = al[i]l;

return a?2?;

» | int main(int argc, char** argv)
{
int nums(4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// do stuff with your copy!
free (ncopy) ;
return EXIT SUCCESS;

CSE 374 AU 20 - KASEY CHAMPION

14

Example: 2 - main local variable in stack

#include <stdlib.h>

int* copy(int af[], int size)

{
int i, *a2; nums [1 | 2| 3] 4]

a2 = malloc(size*sizeof (1int));

if (a2 == NULL) -
return NULL;

for (1 = 0; 1 < size; 1i++)
a2[i] = al[i]l;

return a?2?;

int main(int argc, char** argv)

{

int nums[4] = {1, 2, 3, 4};

> int* ncopy = copy(nums, 4);
// do stuff with your copy!
free (ncopy) ;

return EXIT SUCCESS;

CSE 374 AU 20 - KASEY CHAMPION 15

Example: 3 - copy local variables in stack

#include <stdlib.h>

int* copy(int af[], int size)

{

int i, *az;

> a2 = malloc(size*sizeof (1int));
if (a2 == NULL)
return NULL;
for (1 = 0; 1 < size; 1i++)
a2[i] = al[i]l;

return a?2?;

int main(int argc, char** argv)

{

int nums(4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// do stuff with your copy!
free (ncopy) ;

return EXIT SUCCESS;

CSE 374 AU 20 - KASEY CHAMPION 16

Example: 4 - malloc space for int array

#include <stdlib.h>

int* copy(int af[], int size)
{

int i, *az;

a2 = malloc(size*sizeof (1int));
> if (a2 == NULL)
return NULL;
for (1 = 0; 1 < size; 1i++)
a2[i] = alil;

return a?2?;

int main(int argc, char** argv)
{
int nums(4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// do stuff with your copy!
free (ncopy) ;
return EXIT SUCCESS;

CSE 374 AU 20 - KASEY CHAMPION 17

Example: 5 - fill available space from local var

{

}

{

#include <stdlib.h>

int* copy(int af[], int size)

int i, *az;

a2 = malloc(size*sizeof (1int));
if (a2 == NULL)
return NULL;
for (1 = 0; 1 < size; 1i++)
a2[i] = alil;

return a?2?;

int main(int argc, char** argv)

int nums(4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// do stuff with your copy!
free (ncopy) ;

return EXIT SUCCESS;

2 (3[4
oy/| /
[T dize/l 4 |
i [/4 P/a2 f

CSE 374 AU 20 - KASEY CHAMPION

18

Example: 6 - finish copy and free stack space

#include <stdlib.h>

int* copy(int af[], int size)
{

int i, *az;

lnums | 1 |2 |34

a2 = malloc(size*sizeof (1int));
if (a2 == NULL)
return NULL;
for (1 = 0; 1 < size; 1i++)
a2l[i] = al[i]l;

return a?2?;

int main(int argc, char** argv)

{

int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
> // do stuff with your copy!

free (ncopy) ;
return EXIT SUCCESS;

CSE 374 AU 20 - KASEY CHAMPION 19

Example: 7 - free ncopy from heap

#include <stdlib.h>

int* copy(int af[], int size)

{
int i, *a2; nums | 1 |2 [3[4

a2 = malloc(size*sizeof (1int));
if (a2 == NULL)
return NULL;
for (1 = 0; 1 < size; 1i++)
a2[i] = alil;

return a?2?;

int main(int argc, char** argv)
{
int nums(4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// do stuff with your copy!
> free (ncopy) ;

return EXIT SUCCESS;

CSE 374 AU 20 - KASEY CHAMPION 20

Appendix

CSE 374 AU 20 - KASEY CHAMPION 21

Pointers to pointers

Levels of pointers make sense:
l.e.: argv, *argv, **argv
Or:argv, argv[0],
argv[0] [0O]
But
& (&p) doesn’t make sense
volid f(int x) {
int*p = &x;
int**g = &p;
// Xr p’ *p’ q; *q, *k-kq

Integer, pointer to integer, pointer to
pointer to integer

&p is the address of ‘p’,

& (&p) would be the address of the
address of p, but that value isn’t stored
separately anywhere and doesn’t have an
address

Tryusingprintf (“The address
of x is %p\n”, &x);

void fl(int* p) { // takes a pointer

: =
Arrays again

“A reference to an object of type int* £2() {
array-of-T which appears in an int x[3]; // x on stack, is pointer
expression decays (with three x[0] = 5;

exceptions) into a pointer to its first
element; the type of the resultant
pointer is pointer-to-T.”

(&x) [0] = 5; // address of x, points to
// same place but different T

*x = 5; // put value at location x
http://c-fag.com/aryptr/aryptrequiv.ht *(x+0) = 5; // Also put value at x
ml £1 (x) ;

£1 (&x) ; // wrong — watch types!

Right: xisthe array, which decays _ _
x = &x[2]; // No! X isn’t really a pointer

int *p = &x[2];

return x; // correct type, but is a

to a pointer to an int and &x
returns a pointer to the entire

array.
4 // dangling pointer

errno

* How do you know if an error has occurred in C?
no exceptions like Java

= usually return a special error value (NULL, -1)

= stdlib functions set a global variable called errno
check errno for specific error types
if (errno == ENOMEM) // allocation failure
perror(“error message”) prints to stderr

C Garbage Collector

= garbage collection is the automatic reclamation of heap-allocated memory that is never
explicitly freed by application

used in many modern languages: Java, C#, Ruby, Python, Javascript etc...

“conservative” garbage collectors do exist for C and C++ but cannot collect all garbage

* Data is considered “garbage” if it is no longer reachable
lost pointers to data (Like a dropped link list node in Java)
memory allocator can sometimes get help from the compiler to know what data is a pointer and what is not

