Lecture 9: C Pointers

Lecture

Participation Poll #9

Log onto

Or
Text CSE374 to 22333

CSE 374: Intermediate
Programming Concepts and
Tools

http://pollev.com/cse374

Administrivia

HW?2 due Thursday
HW3 getting posted later today - due Thursday Oct 28th

Reminder Midterm Friday Oct 29th
- last day of material for midterm Monday Oct 25th

- Bash + C programming

Where do computers store data?

* CPU - Central Processing Unit - computer circuitry that
followed computer instructions in assembly

*RAM - Random Access Memory — a computer’s short-term
memory where data is stored during program operation
When a program ends the memory in use “goes away”

* Hard disc storage - a computer’s long-term memory, this is
where data is stored when you need to preserve it across re-
starts.

Data is stored indefinitely
Can be modified by different processes

= Large sequences of numbers

How do computers store data?

Numbers are representations for electrical switches “transistors” that make up the

brains of the CPU

= All data is binary - 1s and Os
A single digit is called a "bit”

ascii

104

101

108

108

111

Bits come in groups of 8 called “bytes”

binary

01101000

01100101

01101100

01101100

01101111

All instructions can be translated into sequences of binary

* Numbers represent other types of data
ASCII - each byte represents a letter of the English alphabet

Unicode - similar encoding structure to ASCII but covers a wider range of characters

including non-English characters, emojis etc...

Images - represented by a 2D array of “pixels”

Each pixel is represented by 3 numbers: Red, Blue and Green values 0-255

Binary Explained

https://www.youtube.com/watch?v=Xpk67YzOn5w

Addresses in Memory

= Computer memory operates just like an array — addresses and the spaces they represent
Spaces are measured in "bytes” of 8 bits

= Each space in memory is referred to by its

address
Value 504 stored at address Ox08 Sg(déeé‘s ——————
Address of value 504 stored at 0x38 0x08 Y00 , 00 , 00 , 00 , 00 , O1 | F8

* A pointer is a data object that holds an 8%3 —

address 0x20 L
Addresses can point to any type of data because they 8§§g : :
simply point to any space in memory Ox38 . ™G0 T 00 T 08
Like a “contact” object that stores someone’s phone 0x40 i L L ;
number, doesn't store the actual person 0x48 | I | | | | |

Pointers are also stored in memory

Pointers can point to other pointers! <follow down
the rabbit hole>

Pointers can either point to a single variable or an
array

Pointers

Storing in memory an address to another location in memory

int x = 4; //Variable called ‘x’ of type ‘int’ given value ‘4’
int *xPtr = &x; //Variable called ‘xPtr’ of type ‘int pointer’ given value ‘location of x’
int xCopy = *xPtr; //variable called xCopy’ of type ‘int’ given value ‘value found at address xPtr’

int* noPtr = NULL; //variable called ‘noPtr; of type ‘int pointer’ given value of ‘null’

Pointer and Address Syntax in C

int *ptr; alsoworks! Programmer
int* ptr; // preferdmdee of type “pointer to int” without assignment

int x = 123; //an int variable called “x” that stores “123”

ptr = &x; // store the address of “x” in “ptr”

*ptr X &X

* Means “pointer to type”

* placed after type indicates a pointer data type
Similar in java if you add [] after type you declare an array of that type

—r| 123

int* means “pointer to int”

& means “address variable”
Placing an & before a variable name will give you the address in memory of that variable

Dereterencing Pointers

int x = 123;
int* ptr = &x;
*ptr = 456;

printf (“new value of y:%d\n”, *ptr);

*Placing a * before a pointer dereferences the pointer
Means “follow this pointer” to the actual data
*ptr = <data> will update the data stored at the address the pointer is referring to ie ‘write to memory’
*ptr will read the data stored at the address indicated by the pointer
Accessing unused addresses causes a ‘segmentation fault’

* A dangling pointer is one that points to a dead local variable
Data that is no longer in use
Dereferencing a dangling pointer is “undefined behavior” (UB)
UB means ANYTHING could happen

Program could crash(best case), silently fail(worst case)
GCC can catch this kind of error with a warning, but not always

Strings in C

char s1[] = {'c’, ‘s’', ‘e’, “\0'};
char s2[] = “cse”;
char* s3 = Y“cse”;

All are equivalent ways to define a string in C

There are no “strings” in C, only arrays of characters
- "null terminated array of characters”

char* is another way to refer to strings in C

- Technically is a pointer to the first char in the series of chars for the string

Strings cannot be concatenated in C
printf (“*hello, ™ + myName + “\n”); // will not work

CSE 374 AU 20 - KASEY CHAMPION 10

Strings in C

char sl1[] = {’'c’, ‘s’', ‘e’, “\0'};
char s2[] = “cse”;
char* s3 = “cse”;

All are equivalent ways to define a string in C

There are no “strings” in C, only arrays of characters
- "null terminated array of characters”

char* is another way to refer to strings in C

- Technically is a pointer to the first char in the series of chars for the string

Strings cannot be concatenated in C
printf (“hello, “ + myName + “\n”); // will not work

CSE 374 AU 20 - KASEY CHAMPION 1

Printf — print format function

* Produces string literals to stdout based on given string with format tags
Format tags are stand ins for where something should be inserted into the string literal
%s - string with null termination, %d - int, %f - float
Number of format tags should match number of arguments

Format tags will be replaced with arguments in given order

= Defined in stdio.h

= printf(“format string %s”, stringVariable);
Replaces %s with variable given

printf (“*hello, %s\n”, myName) ;

https://en.wikipedia.org/wiki/Printf format string

https://en.wikipedia.org/wiki/Printf_format_string

Arrays

Contiguous blocks in memory

Declare as: <datatype> arr[<len>]

EX: int* arrayOfInts = int arr[10];
Stores location in memory of first value.

Does NOT store length, user must store and pass
around separately.

Not automatically initialized to any value.

arr

l
arr[3] arr[len-1]

arr[len+2]

Danger, Will Robinson!!

/0 : Printf, scanf

Demo: fopen, fgets

Printf and scanf are two |/O functions, prototyped in stdio.h

Printf (print-format) -3
int printf(const char *format, ...) —»
‘Format’ is a string that can contain format tags -

+ additional arguments to match tags
Number of arguments better match number of % -

23 70 7

Corresponding arguments better have the right
types (%d, int; %f, float; %e, float (prints
scientific); %s, \0- terminated char®; ... Compiler

v o

might check, but not guaranteed
& best case scenario: you crash

=2 printf("$s: %d %g\a", p, y+9,
3.0)

scanf (gets input, formatted)
int scanf(const char *format, ...)
‘Format’ is a string that can contain format
tags
+ additional arguments to match tags -
should be pointers to the right data type so
input can be stored in them
scanf (“%d %s”, &n, str):
scanf ("¥*s %d", &a);

€ %%signores string until space, then reads in

an integer

Puzzle: What Prints?

#include <stdio.h>
void mystery (char *a,
{

int *d = b-1;

c = *b +c;

*b = ¢ - *d;

int *b,

int ¢)

int main

{

char ant[4]

(int argc,

int x[3];

int y

int *z = &y;

*Z =

char **argv)

— Ilbedll;

sd = ¢ - *ds printf (“sd %d %d %s \n”, *x, x[1l], y, ant);
a[z] — a[b _ d],’ mystGIY(ant, X‘|‘l, Y),'
} printf(“%d %d %d %s \n”, *x, x[1], vy, ant);
}
ant b‘e‘d X ‘7‘3{ 4 ant b‘e‘b X 4‘4‘3/ 4
& —] & —]

Questions

CSE 374 AU 20 - KASEY CHAMPION 16

Example: echo.c

#include <studio.h>
#include <stdlib.h>
#define EXIT SUCCESS = O;
int main (1int argc, char** argv)
{
for (int 1 = 1; 1 < argc; 1i++)

{

\

printf (“%s %, argv[i]);
}
printf (“\n”) ;

return EXIT_SUCCESS;

