
Lecture 9: C Pointers
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #9

Log onto pollev.com/cse374

Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia

HW2 due Thursday
HW3 getting posted later today - due Thursday Oct 28th
Reminder Midterm Friday Oct 29th
- last day of material for midterm Monday Oct 25th
- Bash + C programming

2 CSE 374 AU 20 - KASEY CHAMPION

Where do computers store data?

▪CPU – Central Processing Unit – computer circuitry that
followed computer instructions in assembly

▪RAM – Random Access Memory – a computer’s short-term
memory where data is stored during program operation
-When a program ends the memory in use “goes away”

▪Hard disc storage – a computer’s long-term memory, this is
where data is stored when you need to preserve it across re-
starts.
-Data is stored indefinitely

-Can be modified by different processes

3 CSE 374 AU 20 - KASEY CHAMPION

How do computers store data?

▪ Large sequences of numbers
-Numbers are representations for electrical switches “transistors” that make up the

brains of the CPU

▪All data is binary – 1s and 0s
-A single digit is called a “bit”

-Bits come in groups of 8 called “bytes”

-All instructions can be translated into sequences of binary

▪Numbers represent other types of data
-ASCII – each byte represents a letter of the English alphabet

-Unicode – similar encoding structure to ASCII but covers a wider range of characters
including non-English characters, emojis etc…

- Images – represented by a 2D array of “pixels”
- Each pixel is represented by 3 numbers: Red, Blue and Green values 0-255

4 CSE 374 AU 20 - KASEY CHAMPION

english h e l l o

ascii 104 101 108 108 111

binary 01101000 01100101 01101100 01101100 01101111

Binary Explained

https://www.youtube.com/watch?v=Xpk67YzOn5w

Addresses in Memory

▪Computer memory operates just like an array – addresses and the spaces they represent
-Spaces are measured in ”bytes” of 8 bits

5 CSE 374 AU 20 - KASEY CHAMPION

▪Each space in memory is referred to by its
address

-Value 504 stored at address 0x08

-Address of value 504 stored at 0x38

▪A pointer is a data object that holds an
address

-Addresses can point to any type of data because they
simply point to any space in memory

-Like a “contact” object that stores someone’s phone
number, doesn’t store the actual person

-Pointers are also stored in memory

-Pointers can point to other pointers! <follow down
the rabbit hole>

-Pointers can either point to a single variable or an
array

Pointers

Storing in memory an address to another location in memory

int x = 4; // Variable called ‘x’ of type ‘int’ given value ‘4’

int *xPtr = &x; //Variable called ‘xPtr’ of type ‘int pointer’ given value ‘location of x’

int xCopy = *xPtr; //variable called ‘xCopy’ of type ‘int’ given value ‘value found at address xPtr’

int* noPtr = NULL; //variable called ‘noPtr; of type ‘int pointer’ given value of ‘null’

7 CSE 374 AU 21 - KASEY CHAMPION

Pointer and Address Syntax in C

int* ptr; // a variable of type “pointer to int” without assignment

int x = 123; //an int variable called “x” that stores “123”

ptr = &x; // store the address of “x” in “ptr”

* Means “pointer to type”
-* placed after type indicates a pointer data type

- Similar in java if you add [] after type you declare an array of that type

-int* means “pointer to int”

& means “address variable”
-Placing an & before a variable name will give you the address in memory of that variable

8 CSE 374 AU 20 - KASEY CHAMPION

int *ptr; also works! Programmer
preference

*ptr x &x

123

Dereferencing Pointers

int x = 123;

int* ptr = &x;

*ptr = 456;

printf(“new value of y:%d\n”, *ptr);

▪Placing a * before a pointer dereferences the pointer
- Means “follow this pointer” to the actual data
-*ptr = <data> will update the data stored at the address the pointer is referring to ie ‘write to memory’
-*ptr will read the data stored at the address indicated by the pointer
- Accessing unused addresses causes a ‘segmentation fault’

▪A dangling pointer is one that points to a dead local variable
- Data that is no longer in use
- Dereferencing a dangling pointer is “undefined behavior” (UB)
- UB means ANYTHING could happen

- Program could crash(best case), silently fail(worst case)

- GCC can catch this kind of error with a warning, but not always

9 CSE 374 AU 20 - KASEY CHAMPION

Strings in C

char s1[] = {’c’, ‘s’, ‘e’, ‘\0’};

char s2[] = “cse”;

char* s3 = “cse”;

All are equivalent ways to define a string in C

There are no “strings” in C, only arrays of characters

- “null terminated array of characters”

char* is another way to refer to strings in C

- Technically is a pointer to the first char in the series of chars for the string

Strings cannot be concatenated in C

printf(“hello, “ + myName + “\n”); // will not work

10 CSE 374 AU 20 - KASEY CHAMPION

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09

a q s h e l l o \0 r

Strings in C

char s1[] = {’c’, ‘s’, ‘e’, ‘\0’};

char s2[] = “cse”;

char* s3 = “cse”;

All are equivalent ways to define a string in C

There are no “strings” in C, only arrays of characters

- “null terminated array of characters”

char* is another way to refer to strings in C

- Technically is a pointer to the first char in the series of chars for the string

Strings cannot be concatenated in C

printf(“hello, “ + myName + “\n”); // will not work

11 CSE 374 AU 20 - KASEY CHAMPION

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09

a q s h e l l o \0 r

Printf – print format function

▪Produces string literals to stdout based on given string with format tags
-Format tags are stand ins for where something should be inserted into the string literal

-%s – string with null termination, %d – int, %f – float

-Number of format tags should match number of arguments
- Format tags will be replaced with arguments in given order

▪Defined in stdio.h

▪printf(“format string %s”, stringVariable);
-Replaces %s with variable given

-printf(“hello, %s\n”, myName);

12 CSE 374 AU 20 - KASEY CHAMPION https://en.wikipedia.org/wiki/Printf_format_string

https://en.wikipedia.org/wiki/Printf_format_string

Arrays

Contiguous blocks in memory

Declare as: <datatype> arr[<len>]

EX: int* arrayOfInts = int arr[10];

Stores location in memory of first value.

Does NOT store length, user must store and pass
around separately.

Not automatically initialized to any value.

13

14

Puzzle: What Prints?
int main (int argc, char **argv)

{

 char ant[4] = ”bed”;
 int x[3];

 *x = 6;

 x[1] = 7;

 int y = 4;

 int *z = &y;

 *z = *x;

 printf(“%d %d %d %s \n”, *x, x[1], y, ant);
 mystery(ant, x+1, y);

 printf(“%d %d %d %s \n”, *x, x[1], y, ant);
}

15

#include <stdio.h>

void mystery(char *a, int *b, int c)

{

 int *d = b-1;

 c = *b +c;

 *b = c - *d;

 *d = c - *d;

 a[2] = a[b - d];

}

b e d 6 7 4 b e b 4 4 4

Questions

16 CSE 374 AU 20 - KASEY CHAMPION

Example: echo.c
#include <studio.h>

#include <stdlib.h>

#define EXIT_SUCCESS = 0;

int main (int argc, char** argv)

{

 for (int i = 1; i < argc; i++)

 {

 printf(“%s “, argv[i]);

 }

 printf(“\n”);

 return EXIT_SUCCESS;

}
17 CSE 374 AU 20 - KASEY CHAMPION

