
Lecture 7: Intro to C
Programming

CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #7

Log onto pollev.com/cse374

Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia

-Bash sample code + demo videos added to course calendar on website

-Schedule 1:1 time with Kasey via Calendly

-https://calendly.com/kasey-champion/1on1

-Link posted on OH page of course website

-HW1 turn in fixed

-grading scripts misbehaving

-due date will be “flexible”
-HW1 Individual Assignment open on gradescope

-HW2 posting later today, more Bash

2 CSE 374 AU 21 - KASEY CHAMPION

https://calendly.com/kasey-champion/1on1
https://calendly.com/kasey-champion/1on1
https://calendly.com/kasey-champion/1on1

Meet C

▪ Invented to rewrite the Unix OS, successor to B

▪A “low level” language gives the developer the ability to work directly
with memory and processes
- Low level means it sits closer to assembly, the language the CPU uses
- Java is a “high level” language, compiles to bytecode, has a garbage collector that

manages memory for you

▪Useful for software that requires low-level fOS interaction
- Robotics, mobile, high performance software, drivers
- Compact language, human readable but few features compared to Java
- Still used for:

- Embedded programming
- Systems programming
- High-performance code
- GPU programming

▪Ancestor of most modern languages

▪ Java, C++, C#

▪ Much syntax is shared

3 CSE 374 AU 20 - KASEY CHAMPION http://cslibrary.stanford.edu/101/EssentialC.pdf http://www.cplusplus.com/

http://cslibrary.stanford.edu/101/EssentialC.pdf
http://www.cplusplus.com/

C vs Java

C

▪ low level
▪ user responsible for memory
▪ “functions”
▪ No classes - NOT object oriented
▪ compiled
▪ conditional controls
▪ modern syntax (human readable)
▪ small standard library

4

Java

▪ high level
▪ memory managed (garbage collection)
▪ “methods”
▪ classes define objects
▪ compiled
▪ conditional controls
▪ modern syntax (human readable)
▪ large standard library, HUGE extended libraries

GCC

▪GCC is the C compiler we will use
-Translates C into assembly code

- Java compiler takes java code and turns it into Java bytecode (when you install JDK you teach your
computer to understand javanite code)

- Assembly is the language of your CPU

-Can provide warnings for program crashes or failures, but don’t trust it much

-Before compiling your code, gcc runs the C preprocessor on it
-Removes comments

-Handles preprocessor directives starting with #

▪gcc <options> -o <output exe> <c file to compile> <c file to compile>
-gcc –o hello.exe hello.c

▪Options
--g enables debugging

--Wall checks for all warnings

--std=c11 uses the 2011 C standard, what we will use for this class

5 CSE 374 AU 20 - KASEY CHAMPION

C Hello World

#include <stdio.h>
/**
* comment
*/

int main(int argc, char** argv)

{

 printf(“Hello world\n”);
 return 0;

}

6 CSE 374 AU 20 - KASEY CHAMPION

Header file to enable printf # indicates preprocessor directive

Save in file “hello.c”
Compile with command gcc hello.c
 creates executable a.out
Compile with command gcc –o hello.exe hello.c
 creates executable hello.exe
Run ./hello.exe

return type arguments

“hello, world!\n” is a string of length
15 where \n is one character but

contains the null terminator \0
successful return

Hello World in C

7 CSE 374 AU 20 - KASEY CHAMPION

#include

▪Provides access to code in another file, similar to Java import statements

▪#include<somefile.h> will insert code in somefile.h into your C file
- .h files are called “header files”
-#include <foo.h> // standard libraries

- searches for foo.h in “system include” directories

-#include “foo.h” // developer files
- searches current directory, lets coder break project into smaller files (java does this automatically)

▪Executed by preprocessor
-Pulls in code before it is compiled
- Includes work recursively, pulls in includes from headers that were directly included

▪ stdio.h provides foundational set of input and output functions
-printf, stdout

▪other useful standard libraries
-stdlib
-math
-assert

8 CSE 374 AU 20 - KASEY CHAMPION http://www.cplusplus.com/reference/cstdio/

http://www.cplusplus.com/reference/cstdio/

Functions

▪C programs are broken into functions
-Named portion of code that can be referenced by code elsewhere

-Similar to methods and classes in java

returnType functionName (type param1, …, type paramN) {

 // statements

}

9 CSE 374 AU 20 - KASEY CHAMPION

Definition – declaration plus the code to run

//definition

int square (int n) {

 return n * n;

}

-You will get a Linker-error if an item is used but
not defined (java equivalent of “symbol not
found”)

Declaration – specifies the function name, return type
and parameters

//declaration

int square (int n);

-The function header ending in ;
-Similar to interfaces in Java

-exist so you can call a function before you fully define
it

Main function

void main(int argc, char** argv) {

 printf(“hello, %s\n”, argv[1]);

}

-argv is the array of inputs from the command line
-Tokenized representation of the command line that invoked your program

-argv[0] is the name of the program being run

-argc stores the number of arguments ($#)+1

-Like bash!

Main is the first function your program executes once it starts

Expect a return of 0 for successful execution or -1 for failure

10 CSE 374 AU 20 - KASEY CHAMPION

Arguments to Main

char = datatype

char* = pointer to a place in memory that stores a char

char** = pointer to a place in memory that stores pointers to chars

int argc = number of pointers stored in argv

char** argv = “array” of pointers to program input arguments from command line

- Access values with argv[index] Ex: argv[1]
- argv[0] = program name, just like bash

- Array of chars = String
- Arrays do not store their length as a field (not an object), must be passed in argc

11

Printf – print format function

▪Produces string literals to stdout based on given string with format tags
-Format tags are stand ins for where something should be inserted into the string literal

-%s – string with null termination, %d – int, %f – float

-Number of format tags should match number of arguments
- Format tags will be replaced with arguments in given order

▪Defined in stdio.h

▪printf(“format string %s”, stringVariable);
-Replaces %s with variable given

-printf(“hello, %s\n”, myName);

12 CSE 374 AU 20 - KASEY CHAMPION https://en.wikipedia.org/wiki/Printf_format_string

https://en.wikipedia.org/wiki/Printf_format_string

Variables

▪C variable types: int, char, double, arrays (details)
-No Booleans, use int values of nonZero=true and 0=false instead,

- WARNING: opposite of bash

<type> <name> = <value> - Left side evaluates to locations = right side evaluates to values

int x = 1; // stores value 1 at location labeled x

char c = ’a’; // stores value a at location labeled c

double d = 2.5; // stores value 2.5 at location labeled d

int* xPtr = &x; // stores value of location x at location xPtr

x = 2; // stores value 2 at location x

*xPtr = 3; //stores value 3 at location xPtr

13 CSE 374 AU 20 - KASEY CHAMPION

Much more on * and & tomorrow!

https://en.wikipedia.org/wiki/C_data_types

Global vs Local Variables

▪Variables defined inside a function are local to that function
-Can only be used by function within which they are defined

-May have multiple instances (recursion)

-Only ”lives” until end of function
- Space on stack allocated when reached, deallocated after block

▪Variables defined outside functions are global and can be used anywhere in the file and by
any function
-Will only ever be a single instance of a global variable

-Lives until end of program
- Space on stack allocated before main, deallocated after main

-Should be avoided if possible for encapsulation

14 CSE 374 AU 20 - KASEY CHAMPION

global int result = 0;

int sumTo(int max) {

 if (max == 1) return 1;

 result = max + sumTo(max – 1);

 return result;

}

local

example.c

The Stack

▪An area of local memory set aside to hold local variables

▪ Functions like the stack data structure – first in first out

▪When we call a function it allocates memory on the stack for all local variables
-Size of memory depends on datatype

▪When the function returns the memory for the local variables is deallocated

▪ Java has been doing something similar in the background for you all along- garbage
collector

15 CSE 374 AU 20 - KASEY CHAMPION

Strings in C

char s1[] = {’c’, ‘s’, ‘e’, ‘\0’};

char s2[] = “cse”;

char* s3 = “cse”;

All are equivalent ways to define a string in C

There are no “strings” in C, only arrays of characters

- “null terminated array of characters”

char* is another way to refer to strings in C

- Technically is a pointer to the first char in the series of chars for the string

Strings cannot be concatenated in C

printf(“hello, “ + myName + “\n”); // will not work

16 CSE 374 AU 20 - KASEY CHAMPION

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09

a q s h e l l o \0 r

Printf – print format function

▪Produces string literals to stdout based on given string with format tags
-Format tags are stand ins for where something should be inserted into the string literal

-%s – string with null termination, %d – int, %f – float

-Number of format tags should match number of arguments
- Format tags will be replaced with arguments in given order

▪Defined in stdio.h

▪printf(“format string %s”, stringVariable);
-Replaces %s with variable given

-printf(“hello, %s\n”, myName);

17 CSE 374 AU 20 - KASEY CHAMPION https://en.wikipedia.org/wiki/Printf_format_string

https://en.wikipedia.org/wiki/Printf_format_string

Demo: echo.c

18 CSE 374 AU 20 - KASEY CHAMPION

Example: echo.c

#include <studio.h>

#include <stdlib.h>

#define EXIT_SUCCESS = 0;

int main (int argc, char** argv) {

 for (int i = 1; i < argc; i++) {

 printf(“%s “, argv[i]);

 }

 printf(“\n”);

 return EXIT_SUCCESS;

}

19 CSE 374 AU 20 - KASEY CHAMPION

