Lecture b: Regex

Lecture

Participation Poll #5

Log onto

Or
Text CSE374 to 22333

CSE 374: Intermediate
Programming Concepts and
Tools

http://pollev.com/cse374

Administrivia

Sorry the poll everywhere closed over the weekend
Try changing your password by just typing passwd (no username)
Gradescope Add Code: ERPPB2

Office Hours posted!

https://courses.cs.washington.edu/courses/cse374/21au/oh/
(click “week” for easier view)

https://courses.cs.washington.edu/courses/cse374/21au/oh/

Regular Expressions!

/"~ [a-zA-Z_\-1+Q@(([a-zA-Z_\-]1)+\.)+[a-zA-Z]{2,4}8/

Regular expression ("regex"): a description of a pattern of text

e Can test whether a string matches the expression's pattern

e Can use aregex to search/replace characters in a string
Regular expressions are extremely power but tough to read (the above regular
expression matches email addresses)

Regular expressions occur in many places:
e Java: Scanner, String's split method (CSE 143 random grammar generator)

e Supported by HTMLS, JS, Java, Python, PHP, and other languages
e Many text editors (TextPad, Sublime, Vim, etc.) allow regexes in search/replace
e The site Rubular is useful for testing a regex

https://regex101.com/ https://regexcrossword.com/ https://regexone.com/

http://rubular.com/
https://regex101.com/
https://regexcrossword.com/
https://regexone.com/

Glob patterns

 Syntax to replace a pattern with a list of file names that all match that pattern
Enables you to pass multiple file names as arguments without typing them out individually
Pattern matches are based on location within file directory

*Wildcard - * - anything goes here
EX: echo src/*
Src/filel.txt src/file2.txt src/file3.txt

Example uses
echo * - prints every file/folder in current directory
echo *.txt - finds all files with that extension within directory
echo /bin/python* - finds all files within that path because they start with that string
cp src/* dest/ - copies all files from one directory to another
find —-name ™.txt’ recursively finds files ending in .txt

Basic Regular Expression

/abc/

The simplest regexes simply match a particular substring

The above regular expression matches any string containing "abc"
e Match: "abc", "abcdef", "defabc”, ".=.abc.=.", ...
e Don't Match: "fedcba", "ab c", "PHP", ...

! Wildcards, Case sensitivity

A . matches any character except a \n line break

e /.ax../ matches "Faxes", "Jaxes", "Taxes", "maxie", etc.

A trailing i at the end of a regex (after the closing /) signifies a case-insensitive match
e /cal/i matches "Pascal”, "California", "GCal", etc.

Quantifiers: *, +, ?

* means 0 or more occurrences
e /abc*/ matches "ab", "abc", "abcc", "abccc”,

e /a(bc)*/ matches "a", "abc", "abcbc", "abcbcbc”, ...

e /a.*a/ matches "aa" "aba" "a8qga", "al?xyz__ 9a",
+ means 1 or more occurrences

e /Hi'!+ there/ matches "Hi! there", "Hilll therel", ...

e /a(bc)+/ matches "abc", "abcbc", "abcbcebc”,
? means 0 or 1 occurrences

e /a(bc) ?/ matches only "a" or "abc"

Regex special characters

\ - escape following character () — groups patterns for order of operations

. —matches any single character at least once [] — contains literals to be matched, single or range
c.tmatches {cat, cut, cota] [a-b] matches all lowercase letters
| - or, enables multiple patterns to match against

~ - anchors to beginning of line
a |b matches {a} or {b}

* - matches 0 or more of the previous pattern (greedy match) *// matches lines that start with //
a* matches {, a, aa, aaa, ..} $ - anchors to end of line
? —matches 0 or 1 of the previous pattern : $ matches lines that end with ;

a? matches {, a}

+ - matches one or more of previous pattern
a+ matches {a, aa, aaa, ..}

{n} — matches exactly n repetitions of the preceding
a{3} matches {aaa}

Character ranges: [start-end]

Inside a character set, specify a range of characters with -
e /[a-z]/ matches any lowercase letter
e /[a-zA-70-9]/ matches any lowercase or uppercase letter or digit
Inside a character set, - must be escaped to be matched
e /[+\-1?2[0-9]+/ matches an optional + or -, followed by at least one digit

Practice: Write a regex for Student ID numbers that are exactly 7 digits and start with a 1
-—- Pass —--

12345677

-— Fail —-
7654321
123abcd
123

1[0-9]{6}

grep with options

grep

grep

grep

grep

grep

grep

grep

[options] [pattern] [file]

—C

"string" FILENAME # -c count number of matches

"string" FILENAME # -1 case 1insensitive

"string" FILENAME # -w checks for words and not substrings
<N> "string" FILENAME # -A prints N lines after match

<N> "string" FILENAME # -B prints N lines before match

"string" * # -r recursive search from current directory

grep with regex

= Useful Regex Patterns
[a-zA-Z] - matches all English letters

[0-9]* - matches list of numbers
(abc)* - match any number of “abc”s

(foo | bar) - matches either “foo” or “bar”

grep “"hello” filel #Match all lines that start with ‘hello’

grep “done$” filel #Match all lines that end with ‘done’

grep “[a-e]” filel #Match all lines that contain any of the letters a-e
-.grep ™ *[0-9]” filel #Match all lines that start with a digit following
Zero Oor more spaces. E.g: Y 1.7 or “2.”

Extended Regex

grep —-E uses “extended” regex
In basic regular expressions the meta-characters ?, +, {, |, (, and) lose their special meaning; instead use

the backslashed versions \?, \+, \{, \|, \(, and \).
Traditional egrep did not support the { meta-character, and some egrep implementations support \{

instead, so portable scripts should avoid { in grep -E patterns and should use [{] to match a literal {.

Also grep -e allows to use several strings for searching: 'grep -e 'abc' -e 'def' -e '123" will look for any of the
three of these strings: abc as well as def and 123.

grep -E ""[A-Z].*[.,]$"' file.txt

match all lines that start with a capital letter and end with either period or comma

¥ matches any number of any character

https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e

https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e
https://stackoverflow.com/questions/17130299/whats-the-difference-between-grep-e-and-grep-e

Grep regex demo

