- .
-1«?« ‘;\'é:; ) _~: A
¢ :Gﬂ- ’?‘:40;:*2..‘.
¢ U)"-\‘s‘:.k‘ ¢

g ;
i g B0

i - Minty 'g:?* : . 1,"
FEET e 3
Lecture Participation Poll #28
" ':":"'r,;

Log onto pollev.com/cse374
Or
Text CSE374 to 22333

Lecture 28: CONCUrrency | cses nemedae

Programming Concepts and

Continued... | wos


http://pollev.com/cse374

Administrivia

*HW 5 (final HW) posted
*Final review assignment posted!

=End of quarter due date Wednesday December 16" @ 9pm



Concurrency vs Parallelism

=parallelism refers to running things simultaneously on separate resources (ex.
Separate CPUs)

=concurrency refers to running multiple threads on a shared resources
=Concurrency is one person cooking multiple dishes at the same time.
=Parallelism is having multiple people (possibly cooking the same dish).

*Allows processes to run ‘in the background’
=Responsiveness - allow GUI to respond while computation happens
=CPU utilization - allow CPU to compute while waiting (waiting for data, for input)

sisolation - keep threads separate so errors in one don'’t affect the others



Concurrency

A search engine could run concurrently:

Example: Execute queries one at a
time, but issue |/O requests against
different files/disks simultaneously

Could read from several index files
at once, processing the 1/0 results
as they arrive

Examplle: Web server could execute
multiple queries at the same time
While one is waiting for /0O,

another can be executing on the
CPU

=Use multiple “workers”

As a query arrives, create a new “worker” to handle
It
The “worker” reads the query from the network,

issues read requests against Tiles, assembles results
and writes to the network

The “worker” uses blocking 1/0; the “worker”
alternates between consuming CPU cycles and
blocking on 1/0O

The OS context switches between “workers”

\C/\Iékcjle one is blocked on I/O, another can use the

Multiple “workers™ I/O requests can be issued at
once

So what should we use for our “workers”?



Threads

=In most modern OS'’s threads are the unit of scheduling.
Separate the concept of a process from the “thread of execution”
Threads are contained within a process
Usually called a thread, this is a sequential execution stream within a process

=Cohabit the same address space
Threads within a process see the same heap and globals and can communicate with each other through variables and memory
Each thread has its own stack

But, they can interfere with each other - need synchronization for shared resources

=Advantages:
They execute concurrently like processes
You (mostly) write sequential-looking code A Process has a unique: address space, OS resources, and

Threads can run in parallel if you have multiple CPUs/cores security attributes

«Disadvantages: A Thread has a unique: stack, stack pointer, program
If threads share data, you need locks or other synchronization = counter, and registers

Very bug-prone and difficult to debug Threads are the unit of scheduling and processes are their
Threads can introduce overhead

Lock contention, context switch overhead, and other issues Containers; every process has at IeaSt one thread running
Need language support for threads init



Address Spaces

=After creating a thread

- Two threads of execution

_One thread of execution running in the address space
- Original thread (parent) and new

running in the address space thread (child)
reaa (cni

- One PC, stack, SP i
ne stac - New stack created for child thread

- That main thread invokes a - Child thread has its own values of
function to create a new the PC and SP
thread - Both threads share the other
segments (code, heap,
globals)

- They can cooperatively modify
shared data

=Before creating a
thread

]

-> pthread_create() ->

Single threaded address space Multi-threaded address space

CSE 374 AU 20 - KASEY CHAMPION 6



POSIX Threads and Pthread functions

= The POSIX APIs for dealing with threads

Declared in pthread.h
Not part of the C/C++ language (cf. Java)

To enable support for multithreading, must include -pthread flag when compiling and linking with gcc command
POSIX stands for Portable Operating System Interface, pthread conforms to POSIX standard for threading

gcc —g —Wall —-std=cll —-pthread -0 main main.c

*Example Usage

pthread t thread ID;
the threadID keeps track of to which thread we are referring

pthread create takes a function plinter and arguments to trigger separate thread
int pthread create(pthread t *thread, const pthread attr t *attr, void *(*start routing) (void*), void *arg);
note - pthread_create takes two generic (untyped) pointers
interprets the first as a function pointer and the second as an argument pointer

int pthread join(pthread t thread, void **value ptr);
puts calling thread ‘on hold’ until ‘thread” completes - useful for waiting to thread to exit

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html



https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Creating and Terminating Threads

int pthread create (
pthread t* thread,
const pthread attr t* attr,
void* (*start routine) (void*),
volid* argqg);

Creates a new thread into *thread, with attributes *attr (NULL means default attributes)
Returns O on success and an error number on error (can check against error constants)
The new thread runs start_routine(arg)

void pthread exit(void* retval);

Equivalent of exit(retval); for a thread instead of a process
The thread will automatically exit once it returns from start_routine()



void do_one thing(int *pnum times) {

Multi Threaded Example A DI

#include <stdio.h>
#include <pthread.h>

void do one thing(int *);
void do another thing(int *);
void do wrap up(int, int);

int main() {
pthread t threadl, thread2;
int rl = 0, r2 = 0;

pthread create(&threadl, NULL,
pthread create (&thread2, NULL,

pthread join(threadl, NULL);
pthread join(thread2, NULL);

do wrap up(rl, r2);

printf ("doing one thing\n");
for (3 = 0; j < 10000; J++) x = x + 1;
(*pnum_times) ++;

void do another thing(int *pnum times) {
int 1, 3j, x;
for (i = 0; 1 < 4; i++) {
printf ("doing another \n");
for (j = 0; J < 10000; J++) x = x + 1i;
(*pnum_times) ++;

(void *) do one thing, (void *) &rl);
(void *) do_another thing, (void *) &r2);

volid do wrap up(int one times, int another times) {
int total;
total = one times + another times; printf ("All done,
one thing %d, another %d for a total of
$d\n", one times, another times, total);



Parallel Processing

=common pattern for expensive computations (such as data processing)
1.  split up the work, give each piece to a thread (fork)
2. wait until all are done, then combine answers (join)

*t0 avoid bottlenecks, each thread should have about the same about of work
=performance will always be less than perfect speedup

=what about when all threads need access to the same mutable memory?



After forking threads

int pthread join(pthread t thread, void** retval);

Waits for the thread specified by thread to terminate
The thread equivalent of waitpid()
The exit status of the terminated thread is placed in *retval

int pthread detach (pthread t thread);

Mark thread specified by thread as detached - it will clean up its resources as soon as it terminates



Race Conditions

A race condition happens when the result of a computation depends upon
scheduling of multiple threads, ie the order in which the processor executes
Instructions.

=Bad interleavings is when the code exposes bad intermediate state.
example: the getBalance() -> setBalance() calls exposed intermediate state.

Bad interleavings are incorrect from the programmatic logical perspective:
in the bank example, we lost money or allowed balances to go below O.

=Data races - Even if we can't have a line-by-line interleaving, we can still have race
conditions

what seems like an "atomic” operation, like setting "balance_ = amount” or "return balance_", is
actually NOT guaranteed to be an atomic operation at the compiled machine-code level.

whenever you have the potential to read+write or write+write on different threads, you MUST synchronize access
to the shared memory (with a lock or similar).




Data Races

=Two memory accesses form a data race if different threads access the same location, and
at least one is a write, and they occur one after another
Means that the result of a program can vary depending on chance (which thread ran first?)

=Data races might interfere in painful, non-obvious ways, depending on the specifics of the
data structure

=Example: two threads try to read from and write to the same shared memory location
Could get “correct” answer

Could accidentally read old value
One thread’s work could get “lost”

*Example: two threads try to push an item onto the head of the linked list at the same time
Could get “correct” answer

Could get different ordering of items
Could break the data structure!



A Data Race

=two threads are running at the same time, and therefore, because we cannot guarantee the
exact speed at which each thread runs, we could get into a bad situation

=have a bank account x with a balance
of $150

=thread T1 calls x.withdrawal(100) and
thread T2 calls x.withdrawal(100) right
afterwards

two transactions are attempting to happen
on the same account

what SHOULD happen is that one of the
transactions succeeds in withdrawing 100,
and the other throws an exception because
the remaining balance of $50 is insufficient

Thread T1: Thread T2:

double b = getBalance();
double b = getBalance();
if (amount > b) {
throw std::invalid argument();

}

setBalance(b - amount);

time

«T1 reads the balance (150) and stores |

it in variable b v if (amount > b) {

throw std::invalid argument();

}

=T2 executes completely, deducting
setBalance(b - amount);

100 from the account to leave a
balance of 50

rest of the function on T1 executes,
comparing 150 with 100 (ok) and then
setting the balance to $50

\\e' ion! .
We've lost a transaction! https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24“concurrency-1.html



https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html

Synchronization

=Synchronization is the act of preventing two (or more) concurrently running threads
from interfering with each other when operating on shared data
Need some mechanism to coordinate the threads

“Let me go first, then you can go”

Many different coordination mechanisms have been invented

=Goals of synchronization:

Liveness - ability to execute in a timely manner
(informally, “something good happens”)

Safety - avoid unintended interactions with shared data structures (informally, “nothing bad happens”)



Lock Synchronization

=Use a “Lock” to grant access to a critical section so that only one thread can operate

there at a time
Executed in an uninterruptible

an operation we want to be done all at once
operation must be the right size (atomic unit)

too big program runs sequentially
too small program has data races

=Lock Acquire

Wait until the lock is free, // non-critical code
then take it

_ loop/idle
lock.acquire () ; jf|ocked

// critical section
lock.release () ;

sLock Release
Release the lock
If other threads are waiting, wake exactly one up to pass lock to

// non-critical code




Example

=If your fridge has no milk,

then go out and buy some more
What could go wrong?

=If you live alone:

Nl

If you live with a roommate:

B @ ah

® -

=1

“\What if we use a lock on the
refrigerator?

Probably overkill - what if
roommate wanted to get eggs?

=For performance reasons, only
put what is necessary in the

fridge.lock ()

1f (Imilk) {
buy milk

}

fridge.unlock ()

critical section
Only lock the milk

But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

}

milk lock.lock()
1f (Imilk) {
buy milk

milk lock.unlock ()




pthreads and Locks

=Another term for a lock is a mutex (“mutual exclusion”)
pthread.h defines datatype pthread_mutex_t

=pthread_mutex_init()

int pthread mutex init (pthread mutex t* mutex, const pthread mutexattr t* attr);

Initializes a mutex with specified attributes

-pthread_mutex_lock() int pthread mutex lock (pthread mutex t* mutex);
Acquire the lock - blocks if already locked

-pthread_mutex_unlock() int pthread mutex unlock (pthread mutex t* mutex);
Releases the lock

= pthread_m utex_destroy() int pthread mutex destroy (pthread mutex t* mutex);
“Uninitializes” a mutex - clean up when done




deadlocks

=All of this locking/unlocking is tricky, and it is easy to forget. As an alternative, C++ provides
something called a "lock guard” which simplifies the act of using a mutex:

void deposit(double amount) { std::lock_guard<std::mutex> lock(m_); // locks mutex m_ in
the lock_guard constructor // mutex is now locked setBalanceWithLock(getBalance() +
amount); // When deposit() returns, the stack-allocated lock_guard will be deleted, //
calling the destructor and releasing the mutex. }



Synchronization Example

=https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountT
hread.h

=https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountT
hread.cpp



https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.h
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.h
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.cpp
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.cpp

Concurrency Take Aways

=For every memory location, you should obey at least one of the following:
Make it thread-local - whenever possible, avoid sharing resources between threads

make a copy for each thread.
Make it immutable - Whenever possible, do not update objects; make new objects instead.

If a location is only read (never written), then no synchronization is necessary.

Simultaneous reads are not data races, and not a problem.
Make access synchronized, ie use locks and other primitives to prevent race conditions.

No data races. Never allow two threads to read/write or write/write a location at the same time. In C, a program with a

data race is almost always wrong.
Think of what operations need to be atomic. Consider atomicity first, then figure out how to implement it with locks).

Consistent locking. For each location that should be synchronized, have a lock that is ALWAYS locked when reading or

writing that location.

=Use built-in libraries whenever possible. Concurrency is extremely tricky
and difficult to get right; experts have spent countless hours building toodls

for you to use to make your code safe.




Questions

CSE 374 AU 20 - KASEY CHAMPION 22



