
Lecture 28: Concurrency
Continued…

CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #28

Log onto pollev.com/cse374
Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia

▪HW 5 (final HW) posted

▪Final review assignment posted!

▪End of quarter due date Wednesday December 16th @ 9pm

2CSE 374 AU 20 - KASEY CHAMPION

Concurrency vs Parallelism

▪parallelism refers to running things simultaneously on separate resources (ex.
Separate CPUs)

▪concurrency refers to running multiple threads on a shared resources

▪Concurrency is one person cooking multiple dishes at the same time.

▪Parallelism is having multiple people (possibly cooking the same dish).

▪Allows processes to run ‘in the background’

▪Responsiveness – allow GUI to respond while computation happens

▪CPU utilization – allow CPU to compute while waiting (waiting for data, for input)

▪isolation – keep threads separate so errors in one don’t affect the others

3CSE 374 AU 20 - KASEY CHAMPION

Concurrency

4CSE 374 AU 20 - KASEY CHAMPION

▪A search engine could run concurrently:
-Example: Execute queries one at a

time, but issue I/O requests against
different files/disks simultaneously

-Could read from several index files
at once, processing the I/O results
as they arrive

-Example: Web server could execute
multiple queries at the same time

-While one is waiting for I/O,
another can be executing on the
CPU

▪Use multiple “workers”
-As a query arrives, create a new “worker” to handle

it
-The “worker” reads the query from the network,

issues read requests against files, assembles results
and writes to the network

-The “worker” uses blocking I/O; the “worker”
alternates between consuming CPU cycles and
blocking on I/O

-The OS context switches between “workers”
-While one is blocked on I/O, another can use the

CPU
-Multiple “workers’” I/O requests can be issued at

once

-So what should we use for our “workers”?

Threads
▪In most modern OS’s threads are the unit of scheduling.

- Separate the concept of a process from the “thread of execution”
- Threads are contained within a process
- Usually called a thread, this is a sequential execution stream within a process

▪Cohabit the same address space
- Threads within a process see the same heap and globals and can communicate with each other through variables and memory
- Each thread has its own stack
- But, they can interfere with each other – need synchronization for shared resources

▪Advantages:
- They execute concurrently like processes
- You (mostly) write sequential-looking code
- Threads can run in parallel if you have multiple CPUs/cores

▪Disadvantages:
- If threads share data, you need locks or other synchronization

- Very bug-prone and difficult to debug

- Threads can introduce overhead
- Lock contention, context switch overhead, and other issues

- Need language support for threads

5CSE 374 AU 20 - KASEY CHAMPION

A Process has a unique: address space, OS resources, and
security attributes
A Thread has a unique: stack, stack pointer, program
counter, and registers
Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running
in it

Address Spaces

▪Before creating a
thread
-One thread of execution

running in the address space
- One PC, stack, SP

-That main thread invokes a
function to create a new
thread

 -> pthread_create() ->

6CSE 374 AU 20 - KASEY CHAMPION

▪After creating a thread
-Two threads of execution

running in the address space
- Original thread (parent) and new

thread (child)

- New stack created for child thread

- Child thread has its own values of
the PC and SP

-Both threads share the other
segments (code, heap,
globals)
- They can cooperatively modify

shared data

Single threaded address space Multi-threaded address space

POSIX Threads and Pthread functions
▪ The POSIX APIs for dealing with threads

- Declared in pthread.h
- Not part of the C/C++ language (cf. Java)

- To enable support for multithreading, must include -pthread flag when compiling and linking with gcc command
-POSIX stands for Portable Operating System Interface, pthread conforms to POSIX standard for threading

gcc –g –Wall –std=c11 –pthread –o main main.c

▪Example Usage
-pthread_t thread ID;

- the threadID keeps track of to which thread we are referring

-pthread_create takes a function plinter and arguments to trigger separate thread
- int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start routing) (void*), void *arg);
- note – pthread_create takes two generic (untyped) pointers
- interprets the first as a function pointer and the second as an argument pointer

-int pthread_join(pthread_t thread, void **value_ptr);
- puts calling thread ‘on hold’ until ‘thread’ completes – useful for waiting to thread to exit

7CSE 374 AU 20 - KASEY CHAMPIONhttps://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Creating and Terminating Threads

-Creates a new thread into *thread, with attributes *attr (NULL means default attributes)

-Returns 0 on success and an error number on error (can check against error constants)

-The new thread runs start_routine(arg)

-Equivalent of exit(retval); for a thread instead of a process

-The thread will automatically exit once it returns from start_routine()

8CSE 374 AU 20 - KASEY CHAMPION

int pthread_create(
 pthread_t* thread,
 const pthread_attr_t* attr,
 void* (*start_routine)(void*),
 void* arg);

void pthread_exit(void* retval);

Multi Threaded Example

9CSE 374 AU 20 - KASEY CHAMPION

void do_wrap_up(int one_times, int another_times) {
 int total;
 total = one_times + another_times; printf("All done,
 one thing %d, another %d for a total of
 %d\n", one_times, another_times, total);
}

#include <stdio.h>
#include <pthread.h>

void do_one_thing(int *);
void do_another_thing(int *);
void do_wrap_up(int, int);

int main() {
 pthread_t thread1, thread2;
 int r1 = 0, r2 = 0;

 pthread_create(&thread1, NULL, (void *) do_one_thing, (void *) &r1);
 pthread_create(&thread2, NULL, (void *) do_another_thing, (void *) &r2);

 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 do_wrap_up(r1, r2);
}

void do_one_thing(int *pnum_times) {
 int i, j, x;
 for (i = 0; i < 4; i++) {
 printf("doing one thing\n");
 for (j = 0; j < 10000; j++) x = x + i;
 (*pnum_times)++;
 }
}

void do_another_thing(int *pnum_times) {
 int i, j, x;
 for (i = 0; i < 4; i++) {
 printf("doing another \n");
 for (j = 0; j < 10000; j++) x = x + i;
 (*pnum_times)++;
 }
}

Parallel Processing

▪common pattern for expensive computations (such as data processing)

1. split up the work, give each piece to a thread (fork)

2. wait until all are done, then combine answers (join)

▪to avoid bottlenecks, each thread should have about the same about of work

▪performance will always be less than perfect speedup

▪what about when all threads need access to the same mutable memory?

10CSE 374 AU 20 - KASEY CHAMPION

After forking threads

-Waits for the thread specified by thread to terminate

-The thread equivalent of waitpid()

-The exit status of the terminated thread is placed in *retval

-Mark thread specified by thread as detached – it will clean up its resources as soon as it terminates

11CSE 374 AU 20 - KASEY CHAMPION

int pthread_join(pthread_t thread, void** retval);

int pthread_detach(pthread_t thread);

Race Conditions

▪A race condition happens when the result of a computation depends upon
scheduling of multiple threads, ie the order in which the processor executes
instructions.

▪Bad interleavings is when the code exposes bad intermediate state.
-example: the getBalance() -> setBalance() calls exposed intermediate state.
-Bad interleavings are incorrect from the programmatic logical perspective:

-in the bank example, we lost money or allowed balances to go below 0.

▪Data races - Even if we can't have a line-by-line interleaving, we can still have race
conditions
-what seems like an "atomic" operation, like setting "balance_ = amount" or "return balance_", is

actually NOT guaranteed to be an atomic operation at the compiled machine-code level.

12CSE 374 AU 20 - KASEY CHAMPION

whenever you have the potential to read+write or write+write on different threads, you MUST synchronize access
to the shared memory (with a lock or similar).

Data Races

▪Two memory accesses form a data race if different threads access the same location, and
at least one is a write, and they occur one after another
- Means that the result of a program can vary depending on chance (which thread ran first?)

▪Data races might interfere in painful, non-obvious ways, depending on the specifics of the
data structure

▪Example: two threads try to read from and write to the same shared memory location
- Could get “correct” answer

- Could accidentally read old value

- One thread’s work could get “lost”

▪Example: two threads try to push an item onto the head of the linked list at the same time
- Could get “correct” answer

- Could get different ordering of items

- Could break the data structure!

13CSE 374 AU 20 - KASEY CHAMPION

A Data Race
▪two threads are running at the same time, and therefore, because we cannot guarantee the
exact speed at which each thread runs, we could get into a bad situation

14CSE 374 AU 20 - KASEY CHAMPION

▪have a bank account x with a balance
of $150

▪thread T1 calls x.withdrawal(100) and
thread T2 calls x.withdrawal(100) right
afterwards
- two transactions are attempting to happen

on the same account
- what SHOULD happen is that one of the

transactions succeeds in withdrawing 100,
and the other throws an exception because
the remaining balance of $50 is insufficient

▪T1 reads the balance (150) and stores
it in variable b

▪T2 executes completely, deducting
100 from the account to leave a
balance of 50

▪rest of the function on T1 executes,
comparing 150 with 100 (ok) and then
setting the balance to $50

▪We've lost a transaction! https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html

https://courses.cs.washington.edu/courses/cse374/18sp/lectures/24-concurrency-1.html

Synchronization

▪Synchronization is the act of preventing two (or more) concurrently running threads
from interfering with each other when operating on shared data
-Need some mechanism to coordinate the threads

- “Let me go first, then you can go”

-Many different coordination mechanisms have been invented

▪Goals of synchronization:
-Liveness – ability to execute in a timely manner

(informally, “something good happens”)

-Safety – avoid unintended interactions with shared data structures (informally, “nothing bad happens”)

15CSE 374 AU 20 - KASEY CHAMPION

Lock Synchronization

▪Use a “Lock” to grant access to a critical section so that only one thread can operate
there at a time
-Executed in an uninterruptible

-an operation we want to be done all at once

-operation must be the right size (atomic unit)
- too big program runs sequentially

- too small program has data races

▪Lock Acquire
-Wait until the lock is free,

then take it

▪Lock Release
-Release the lock

-If other threads are waiting, wake exactly one up to pass lock to

16CSE 374 AU 20 - KASEY CHAMPION

// non-critical code

lock.acquire();
// critical section
lock.release();

// non-critical code

loop/idle
if locked

Example

▪If your fridge has no milk,
then go out and buy some more
-What could go wrong?

▪If you live alone:

If you live with a roommate:

17CSE 374 AU 20 - KASEY CHAMPION

▪What if we use a lock on the
refrigerator?
-Probably overkill – what if

roommate wanted to get eggs?

▪For performance reasons, only
put what is necessary in the
critical section
-Only lock the milk

-But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

fridge.lock()
if (!milk) {
 buy milk
}
fridge.unlock()

milk_lock.lock()
if (!milk) {
 buy milk
}
milk_lock.unlock()

pthreads and Locks

▪Another term for a lock is a mutex (“mutual exclusion”)
-pthread.h defines datatype pthread_mutex_t

▪pthread_mutex_init()

-Initializes a mutex with specified attributes

▪pthread_mutex_lock()
-Acquire the lock – blocks if already locked

▪pthread_mutex_unlock()
-Releases the lock

▪ pthread_mutex_destroy()
-“Uninitializes” a mutex – clean up when done

18CSE 374 AU 20 - KASEY CHAMPION

int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

deadlocks

▪All of this locking/unlocking is tricky, and it is easy to forget. As an alternative, C++ provides
something called a "lock guard" which simplifies the act of using a mutex:

▪void deposit(double amount) { std::lock_guard<std::mutex> lock(m_); // locks mutex m_ in
the lock_guard constructor // mutex is now locked setBalanceWithLock(getBalance() +
amount); // When deposit() returns, the stack-allocated lock_guard will be deleted, //
calling the destructor and releasing the mutex. }

19CSE 374 AU 20 - KASEY CHAMPION

Synchronization Example

▪https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountT
hread.h

▪https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountT
hread.cpp

20CSE 374 AU 20 - KASEY CHAMPION

https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.h
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.h
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.cpp
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/cppcode/BankAccountThread.cpp

Concurrency Take Aways

▪For every memory location, you should obey at least one of the following:
-Make it thread-local - whenever possible, avoid sharing resources between threads

- make a copy for each thread.

-Make it immutable - Whenever possible, do not update objects; make new objects instead.
- If a location is only read (never written), then no synchronization is necessary.
- Simultaneous reads are not data races, and not a problem.

-Make access synchronized, ie use locks and other primitives to prevent race conditions.
- No data races. Never allow two threads to read/write or write/write a location at the same time. In C, a program with a

data race is almost always wrong.
- Think of what operations need to be atomic. Consider atomicity first, then figure out how to implement it with locks).
- Consistent locking. For each location that should be synchronized, have a lock that is ALWAYS locked when reading or

writing that location.

▪Use built-in libraries whenever possible. Concurrency is extremely tricky
and difficult to get right; experts have spent countless hours building tools
for you to use to make your code safe.

21CSE 374 AU 20 - KASEY CHAMPION

Questions

22CSE 374 AU 20 - KASEY CHAMPION

